
Model, Design and Control of a
Quadcopter
Implemented on an Arduino Microcontroller,

Using Wireless Communication Linked with a

Computer Interface, Utilizing Additive

Manufacturing Techniques to Enable Simple

Replication

Andreas Vikane Hystad

Master of Science in Cybernetics and Robotics

Supervisor: Sverre Hendseth, ITK

Department of Engineering Cybernetics

Submission date: May 2015

Norwegian University of Science and Technology

.

Model, Design and Control
of a Quadcopter

Implemented on an Arduino Microcontroller, Using
Wireless Communication Linked with a Computer

Interface, Utilizing Additive Manufacturing Techniques to
Enable Simple Replication

by

Andreas Vikane Hystad
Joakim Brobakk Lehn

May 27, 2015

DEPARTMENT OF ENGINEERING CYBERNETICS
Norwegian University of science and technology

Problem description

The objective is to build, model, design and control a quadcopter sensor plat-
form. The final product should be a good basis platform for future work with
regards to advanced dynamical position systems or other applications suitable
for a quadcopter platform. User control is to be achieved through the use of a
computer application linked with an Arduino microcontroller and a replicable
frame is to be developed through project management of an ”Experts in Team”
group. More specifically, the students have to:

• Obtain fast and accurate attitude and position estimates

• Implement and present a stable solution for the control of both the attitude
and altitude

• Devise a path following control scheme and a velocity vector controller

• Develop an user interface for simple commands, that communicates wire-
lessly with the quadcopter

• Design a quadcopter 3D-model that enables the use of additive manufac-
turing

i

Preface

This report is written as a master thesis and builds upon a previous project
conducted by the authors. We chose to work with a quadcopter because of our
passion for control theory and complex systems, and frankly we find quadcopters
extremely cool.

We want to give a special thanks to Sverre Hendseth for his guidance regard-
ing this report and unceasing belief in our capabilities. We would also like to
thank the department of engineering cybernetics for the opportunity to conduct
this project, and also for providing the means for 3D printing our quadcopter
prototype model. Finally we want to thank all the members of the experts in
team group who helped design and develop our prototype model; Thomas Ros-
trup Andersen, H̊akon Br̊aten, Alexander Vognild Burkow, H̊akon Leithe, Nils
Inge Rugsveen and kristian Stenrød.

A substantial amount of time spent on project management, construction of
the quadcopter prototypes, coding the Arduino microcontroller and conducting
experiments, are not reflected in this report.

ii

Abstract

The popularity of the quadcopters is increasing as the
sensors and control systems are becoming more advanced
and less expensive. There are many commercial quad-
copters available on the market today, but they are often
hard to configure and comprehend. The time required
to grasp the existing systems, could be spent designing
better solutions. This project aims to use understand-
able system descriptions and sensor models as a basis
to design configurable estimators and controllers, and to
build a quadcopter well suited for educational purposes;
as well as aiding to more advanced control in the future.

The system consists of several components for neces-
sary sensor input, a radio transmitter, Windows user in-
terface and an Arduino microcontroller. All filtering of
signals, estimation of system states, calculation of con-
trol inputs and communication handling is done on the
microcontroller, while the Windows application allows
the user to command various actions. To achieve sim-
ple replicability, a 3D model of the frame was developed
by an ”Experts in Team” group. This provided us with
useful experience in project management.

Satisfactory attitude estimates were obtained, a sta-
ble attitude controller was deduced and implemented,
a user controlled Windows application was successfully
developed and a quadcopter frame was created through
additive manufacturing.

iii

Abstrakt

Populariteten til kvadrotorer har økt ettersom sensorer
og styringssystemer har blit mer avanserte og rimligere.
Det er mange kommersielle kvadroterer tilgjengelig p̊a
markedet i dag, som ofte har begrensede muligheter for
konfigurasjon og som er vanskelige å forst̊a. Tiden som er
nødvendig for å sette seg inn i eksisterende systemer, er
tid som kan bli brukt til å utforme bedre løsninger. Dette
prosjektet tar sikte p̊a å bygge p̊a en forst̊aelig system-
beskrivelse og sensormodell, utforme konfigurerbare esti-
matorer og kontrollere, samt bygge en kvadrotor model
som er godt egnet for undervisningsform̊al og som kan
brukes som et ugangspunkt for mer avansert kontroll i
framtiden.

Systemet best̊ar av flere komponenter for nødvendig
sensor input, en radiosender, Windows brukergrenses-
nitt og en Arduino mikrokontroller. Filtrering av sig-
naler, estimering av system tilstander, kalkulering av
styresignaler og kommunikasjonsh̊andtering er utført p̊a
mikrokontrolleren. Windows applikasjonen gir brukeren
muligheten til å sende ulike kommandoer. For å oppn̊a
god replikerbarhet, ble en 3D-modell av rammen utviklet
av en ”Eksperter i Team” gruppe, noe som gav oss nyttig
erfaring som prosjektledere.

Vi har oppn̊add tilfredsstillende estimat av vinklene,
en stabil kontroller for vinklene ble designet og imple-
mentert, en Windows applikasjon ble utviklet og en
kvadrotor ramme ble 3D printet.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Fundamental Aspects Required When Designing an Autonomous

Quadcopter . 2
1.3 Structure of The Report . 4

2 Summary of Fall Project and Components 5
2.1 Introduction . 5
2.2 Arduino Due Board . 6
2.3 Motors . 7
2.4 Propellers . 8
2.5 Electric Speed Controller . 9
2.6 Inertial Measurement Unit . 9
2.7 Magnetometer . 10
2.8 Range Sensor . 11
2.9 Global Positioning System . 12
2.10 Radio . 13
2.11 Voltage Measurement . 13
2.12 Power Distribution Board . 14
2.13 Battery . 14
2.14 DC-DC Power Adapter . 15

3 Coordinate Systems and Quadcopter Theory 17
3.1 Coordinate Systems . 17

3.1.1 BODY Frame . 17
3.1.2 North-East-Down, Earth-Centered-Earth-Fixed and Geode-

tic Coordinates . 17
3.1.3 The Rotation Matrix . 18
3.1.4 Rotation Between BODY and NED 19
3.1.5 Transformation Between Geodetic and NED 20

3.2 Quadcopter Dynamics . 20
3.2.1 Motor Dynamics . 21
3.2.2 Thrust Generated by the Propellers 21
3.2.3 Torques Generated by the Propellers 23
3.2.4 Equations of Motion . 24
3.2.5 Kinematic Model . 25
3.2.6 Kinetic Model . 25

v

4 Filter Designs 27
4.1 Theory . 27

4.1.1 Low-pass Filter . 27
4.1.2 High-pass Filter . 27
4.1.3 Complementary Filter . 27
4.1.4 Continuous-discrete Extended Kalman Filter 28

4.2 Problem Description . 28
4.3 Discrete Implementation . 29

4.3.1 Low-pass Filter . 29
4.3.2 High-pass Filter . 30
4.3.3 Complementary Filter . 30
4.3.4 Continuous-discrete Extended Kalman Filter 31

4.4 Discussion . 31
4.5 Recommendations and Future Work 32

5 Estimation of Roll and Pitch 33
5.1 Theory . 33

5.1.1 Gravity Vector . 33
5.1.2 Accelerometer Measurement Model 33
5.1.3 Gyroscope Measurement Model 33

5.2 Problem Description . 34
5.3 Design of Solution . 34

5.3.1 Inertial Measurement Unit Sensitivity Range and Scaling . 34
5.3.2 Accelerometer Bias Compensation 35
5.3.3 Gyroscope Bias Compensation 35
5.3.4 Accelerometer Estimate . 35
5.3.5 Gyroscope Estimate . 36
5.3.6 Complementary Filter Estimate 36
5.3.7 Kalman Filter Implementation 36

5.4 Observations and Results . 37
5.5 Discussion and Conclusion . 38
5.6 Recommendations and Future Work 39

6 Estimation of Yaw 41
6.1 Theory . 41

6.1.1 Magnetometer measurement model 41
6.1.2 Gyroscope Measurement Model 41
6.1.3 Earth’s Magnetic Field . 41
6.1.4 Hard and Soft Iron Distortions 43

6.2 Problem Description . 44
6.3 Design of Solution . 45

vi

6.3.1 Hard and Soft Iron Distortions Compensation 45
6.3.2 Magnetometer Estimate . 46
6.3.3 Gyroscope Estimate . 47
6.3.4 Combined Magnetometer and Gyroscope 47

6.4 Observations and Results . 48
6.4.1 Hard and Soft Iron Calibration 48
6.4.2 Yaw Estimates . 49

6.5 Discussion and Conclusion . 51
6.6 Recommendations and Future Work 51

7 Estimation of Position 53
7.1 Theory . 53

7.1.1 Position Measurement from Global Positioning System Tech-
nology . 53

7.1.2 Distance Measurement Using Sound 54
7.2 Problem Description . 54
7.3 Design of Solution . 54

7.3.1 Ultrasonic Sensor Height Estimate 54
7.3.2 GPS Position Estimate . 55
7.3.3 Kalman Position Estimate 56

7.4 Observations and Results . 57
7.5 Discussion and Conclusion . 60
7.6 Recommendations and Future Work 60

8 Control of Attitude 63
8.1 Theory . 63

8.1.1 The Linear Quadratic Regulator 63
8.1.2 The Proportional-Integral-Derivative Controller 64
8.1.3 Nonlinear Control Theory 65
8.1.4 Alternative Controllers . 66

8.2 Problem Description . 67
8.3 Design of Solution . 67

8.3.1 The Linear Quadratic Regulator 68
8.3.2 The Proportional-Integral-Derivative Controller 71
8.3.3 Nonlinear Controller . 72

8.4 Observations and Results . 76
8.4.1 The Linear Quadratic Regulator 76
8.4.2 The Proportional-Integral-Derivative Controller 77

8.5 Discussion and Conclusion . 77
8.5.1 The Linear Quadratic Regulator 78
8.5.2 The Proportional-Integral-Derivative Controller 78

vii

8.6 Recommendation and Future Work 79

9 Control of Altitude 81
9.1 Theory . 81
9.2 Problem Description . 81
9.3 Design of Solution . 81
9.4 Observation and Results . 84
9.5 Discussion and Conclusion . 85
9.6 Recommendation and Future Work 85

10 Control of Motion 87
10.1 Theory . 87

10.1.1 Dynamic Positioning . 87
10.1.2 Waypoints, Paths And Trajectories 87

10.2 Problem Description . 87
10.3 Design of Solution . 88

10.3.1 Guidance Systems, Trajectory and Path Generation 88
10.3.2 Control of Velocity in North-East-Down Coordinate System 93
10.3.3 Structure of the Control System 95

10.4 Discussion . 96
10.5 Recommendation and Future Work 97

11 Prototype Development 99
11.1 Background . 99
11.2 Problem Description . 100
11.3 Development of Prototype Version 1.1 101
11.4 Development of Prototype Version 2 102

11.4.1 Design Strategy . 102
11.4.2 Robustness Calculations . 103
11.4.3 Model and Description of Parts 105

11.5 Observation and Results . 111
11.6 Discussion and Conclusion . 112
11.7 Recommendation and Future Work 112

12 Windows Application for Quadcopter Control 113
12.1 Choice of Application Platform . 113
12.2 Choice of Programming Language and Framework 114
12.3 Programming Graphical User Interface in C# Using Unity3D . . . 115
12.4 Communication Design and Implementation in C# 117

12.4.1 How to Change COM Port on the Radio in Windows 117
12.4.2 How to Enable Serial Communication in C# 120
12.4.3 Design of Communication Protocol 121

viii

12.5 Functionality Description of the Windows Application 123
12.5.1 Connection Tab . 123
12.5.2 Update Tab . 124
12.5.3 Manual Control Tab . 125

13 Error Handling 129
13.1 Problem Description . 129
13.2 Error Detecting and Handling Strategies 129

13.2.1 Loss of Communication . 129
13.2.2 Low Battery . 129
13.2.3 Loss of Sensors . 130
13.2.4 Roll or Pitch Angles Close to Singularity 132

13.3 Recommendation and Future Work 132
13.3.1 Loss Of Communication . 132
13.3.2 Loss of Sensors . 133
13.3.3 Roll or Pitch Angles Close to Singularity 133

14 Discussion and Conclusion 135

15 Future Work 137

Bibliography 139

A Building Quadcopter Prototype 2 143
A.1 Part List . 143
A.2 Preparation of Pre-ordered Parts 144

A.2.1 Motors . 144
A.2.2 Electrical Speed Controller 144
A.2.3 Range Sensor . 145
A.2.4 Inertial Measurement Unit And Magnetometer 146

A.3 Wiring diagram . 148
A.4 Cable List . 149
A.5 Mounting Procedure . 150

A.5.1 Motors and Arms . 150
A.5.2 Electrical Speed Controller and Frame 150
A.5.3 Technical Box . 151
A.5.4 Battery Box . 151

B Description and Walkthrough of Various Code 153
B.1 Arduino Code . 153

B.1.1 Inertial Measurment Unit 153
B.1.2 Infra Red Range Sensor . 153

ix

B.1.3 Magnetometer . 153
B.1.4 Arduino Main . 153
B.1.5 Motor tester . 154
B.1.6 Radio . 154
B.1.7 Ultrasonic Range Sensor . 154
B.1.8 Voltage Reader . 154

B.2 Matlab Code . 154
B.2.1 Matlab Filtering . 154
B.2.2 Read Data over the Radio 154
B.2.3 Read Data over Serial . 154
B.2.4 Simulation . 155

B.3 Windows Application - Unity . 155

x

List of Figures

2.1 Arduino Due board . 7
2.2 Motor used in our quadcopter . 8
2.3 Propellers used in our quadcopter 8
2.4 ESC used in our quadcopter . 9
2.5 IMU used in our quadcopter . 10
2.6 Magnetometer used in our quadcopter for yaw estimation 11
2.7 Range sensor used in our quadcopter 12
2.8 GPS used in our quadcopter . 12
2.9 Radio used for communication . 13
2.10 Scheme for voltage measurement 14
2.11 Power distribution board . 14
2.12 Battery used in our quadcopter . 15
3.1 The quadcopter with its BODY coordinate system 17
3.2 Geodetic longitude and latitude definition and relation to NED . . 18
5.1 A comparison between the different estimates 38
6.1 Total magnetic intensity . 42
6.2 Magnetic measurement with no distortions 43
6.3 Magnetic measurement with hard iron distortions 44
6.4 Magnetic measurement with hard and soft iron distortions 44
6.5 Hard and soft iron calibration. Top row: before calibration. Bot-

tom row: after calibration . 48
6.6 Yaw estimates . 50
7.1 An illustration of how the time difference is measured 54
7.2 Ultrasonic Sensor Concept . 55
7.3 A comparison of the distance measurement vs the tilt compensated

distance estimate . 58
7.4 GPS North and East estimates vs time 59
7.5 GPS estimated North-East position vs actual position 60
8.1 Angle and motor input using LQR 76
8.2 Angle and motor input using PID 77
9.1 Control system design for the altitude 82
9.2 PID control system design for the altitude 83
9.3 Altitude controller . 84
10.1 LOS guidance illustration in 2D . 89
10.2 PP guidance illustration in 2D . 90
10.3 CB guidance illustration in 2D . 91
10.4 Straight Lines and Circles path . 92
10.5 Control system . 95
10.6 Drag illustration . 96

xi

11.1 Prototype version 1 house . 100
11.2 Prototype version 1 . 100
11.3 Prototype version 1.1 . 102
11.4 Top frame . 106
11.5 Bottom Frame . 107
11.6 Technical box top view . 108
11.7 Technical box seen from below . 108
11.8 Battery Box . 109
11.9 Model of the Arm . 110
11.10Model of the Leg . 110
11.11Prototype version 2 . 111
12.1 How to access Windows properties 118
12.2 How to access Device Manager . 118
12.3 How to access COM port properties 119
12.4 How to access Advanced port settings 119
12.5 How to change COM port in hardware 120
12.6 Connection tab in Windows application 124
12.7 Configuration Update tab in Windows application 125
12.8 Manual Control tab in Windows application 127
A.1 Prepared motors with termination 144
A.2 A prepared ESC should look like this 145
A.3 Prepared range sensor . 146
A.4 IMU and magnetometer with pins 147
A.5 Wiring diagram . 148
A.6 The ESC’s are palced in the space between the top frame and

bottom frame . 150
A.7 The resulting quadcopter model . 151

xii

List of Tables

2.1 Comparison between the arduino Leonardo and arduino Due board 6
5.1 Sensitivity ranges and scales, accelerometer 34
5.2 Sensitivity ranges and scales, gyroscope 34
8.1 Zieger-Nichols method . 64
8.2 PID control gains . 79
11.1 Results from load calculations . 104
11.2 Capacity for ABS-plus . 105
11.3 Approximate time needed for printing the quadcopter 111
A.1 Part list . 143
A.2 3D print . 143
A.3 Screws and nuts . 144
A.4 Wiring schematic . 150

xiii

List Of Abbreviations

DMP - Digital Motion Processor
EKF - Extended Kalman filter
ESC - Electric Speed Controller
GPS - Global Positioning System
IMU - Inertial Measurment Unit
IR - Infrared
LQR - Linear Quadratic Regulator
NED - North East Down
RF - Radio frequency
PID - Proportional-Integral-Derivative (Controller)
RPM - Revolutions per Minute
PWM - Pulse-Width Modulation
UAV - Unmanned Aerial Vehicle
VTOL - Vertical Takeoff and Landing

xiv

List Of Symbols

b - Refered to BODY frame

n - Refered to NED frame
φ - Euler angle roll
θ - Euler angle pitch
ψ - Euler angle yaw
p - Euler angle roll rate
q - Euler angle pitch rate
r - Euler angle yaw rate

xv

1 Introduction

The Israeli and US military were among the first to recognize the advantage of
unmanned aerial vehicles. The research and investment in these machines have
been bolstered by the advance of miniaturization, maturing of technologies, more
powerful processors and more reliable and cheaper sensors. The miniaturization
favored the creation of mini UAV or micro UAV (MAV); weighing less then a
kilogram. This have motivated creation of innovative vehicles in the private sector
and in universities, some universities in particular turned their attention to the
potential of Vertical Takeoff and Landing (VTOL) vehicles. Increasing interest in
drones for both commercial and military purposes in modern times, have lead to
the development of many commercial ”complete packaged” quadcopter solutions
being available on the market today.

The quadcopter is a popular drone, mainly because of its unique properties.
The major advantages of the quadcopter, is its ability to hover, or stand still in
the air, and its VTOL capabilities. This allows the quadcopter to be operated in
nearly any environment, such as indoorpleve flying or tight spaces with limited
maneuverability.

A conventional helicopter with one main rotor and one tail rotor posses many
of the same properties as a quadcopter. However, the quadcopter have no mov-
ing parts except for the rotating motors and propellers, while the conventional
helicopter require a complex hub to make it possible to rotate the motor axis to
induce a translating movement. The quadcopter is also less prone to vibrations
and it is more flexible when it comes to the placement of the center of gravity.
Due to smaller size of rotors, they can be more easily covered, making it safer to
fly indoors.

The typical quadcopter design has, as stated earlier, no moving parts except
for the propellers. The motors and their propellers are mounted to the frame and
the only way to induce a lateral motion is to tilt the entire frame.

Unlike a conventional helicopter, the quadcopter does not have a tail rotor
to control the yaw motion. The quadcopter has four motors where two spins
clockwise and two spins counterclockwise. If the pair of clockwise motors are
spinning at a different rate than the pair of counterclockwise motors, it will
create a moment about the yaw axis.

1.1 Motivation

Quadcopter control is a fundamentally difficult and interesting problem. With six
degrees of freedom and only four independent inputs, the quadcopter is underac-
tuated and the resulting dynamics are highly nonlinear. Unlike ground vehicles,
aerial vehicles have very little friction to prevent their motion, therefore they must

1

provide their own damping in order to stop moving and remain stable. These
factors make the stabilization of the quadcopter a fascinating control problem.

The span and complexity makes this project an extensive learning platform.
Our motivation lies in the design of our own solutions to the many challenges
faced during the development of an autonomous quadcopter platform. Time
required to grasp the existing commercial quadcopter systems, could be better
spent designing our own solution. Another key motivational factor is the learn-
ing outcome gained during the execution of this project. Throughout this paper
we will therefore evaluate various designs, implement and compare the results
in order to conclude which of the solutions that has the best performance. Fur-
thermore, we will gain project management experience by leading an ”Experts in
Team” group consisting of six students. These students will assist in the devel-
opment of a prototype that will serve as a test platform, which can be used by
future student who wish to work with quadcopters. Our greatest motivation for
this project is to learn the many various aspects regarding a project of this size,
and to improve our advanced problem solving capabilities.

1.2 Fundamental Aspects Required When Designing an
Autonomous Quadcopter

The designing of an autonomous quadcopter is a complicated and comprehensive
task. To tackle larger tasks, a ”divide and conquer” strategy is often applied.
By dividing the project into smaller tasks to be solved independently, the overall
complexity is reduced. The project has thus been divided into smaller projects.
Following, is a list describing the different ”mini” projects and why they are
needed as a part of completing the overall design

• Filter design: All of our sensors provide raw data, which contains unwanted
noise. To reduce the noise levels, there are several different filters which can
be applied to the sensor readings. In this section, we will look at a few dif-
ferent options and how to implement them on the Arduino microcontroller.

• Estimation of Roll and Pitch: In order to control the quadcopter roll and
pitch angles, the angles must be known. None of the sensors measure
the angles directly, therefore an estimate has to be obtained from the ac-
celerometer and/or gyroscope sensors. In this section, we propose several
estimation schemes for the roll and pitch angles, and compare the resulting
estimates. An estimation scheme is chosen based on the results.

• Estimation of Yaw: In order to control the quadcopter yaw angle, the yaw
angle must be known. Since none of the sensors measure the yaw angle
directly, an estimate has to be obtained from the magnetometer and/or

2

gyroscope sensor. These sensor readings are dependent on the roll and
pitch angles, and thus relies on the estimates found in the previous section.

• Estimation of position: The height above the ground is the most crucial
information needed in order to control the quadcopter. This will allow
the quadcopter to be manually controlled, using the desired height and tilt
angles as input. If the North and East coordinates are known as well, a
complete autonomous control scheme can be implemented. An estimation
strategy for height is proposed, using an ultrasonic sensor, and an estima-
tion scheme for position is proposed, using a GPS and an IMU. Solutions
are chosen based on the result.

• Control of attitude: If the estimates schemes of the attitude obtained from
previous sections are accurate, the attitude can be controlled by varying
the inputs to the motors. A difference in in the propeller speed on the mo-
tors, will create a moment and turn the quadcopter frame. In this section,
different control schemes for controlling the attitude is presented, and a
solution is chosen based on the results.

• Control of altitude: By controlling the attitude, the quadcopter should
not drift. Controlling the height above the ground as well, will enable
the quadcopter to hover in the air. A control scheme for the altitude will
presented, and a solution will be chosen based on the result.

• Control of motion: Using a stable attitude and altitude controller as a
basis, more advanced control schemes can be devised. Depending on the
objective, several guidance systems may apply, and several path generation
methods exists. Some guidance systems will be explored along with tra-
jectory generation methods and path generation methods. To control the
speed of the quadcopter along the desired velocity given by the guidance
systems, a speed controller will be devised.

• Development of a prototype: In this section, we will go through the de-
velopment of a working prototype, printed using additive manufacturing
techniques.

• User control interface: To control the quadcopter, a user control interface
needs to be designed. This control interface can be developed on numerous
different platforms using several different strategies. Different options will
be presented and an application will be created.

• Error handling: Several unexpected errors can occur at any time during a
flight. A number of possible errors and solutions will be explored.

3

1.3 Structure of The Report

This project is a considerable task, and needs to be broken down into smaller
projects that can be solved independently. We have structured our report by
starting with providing the necessary background information, containing the
current status when starting the project as well as summarizing the most funda-
mental results from our project last fall.

After the background chapter, ten ”mini” projects will follow, as described
in Section 1.2. This is to make the report more straightforward to follow for the
reader, and to make it easier to look up parts of interest. We round off the report
with a general discussion regarding the entire project, before providing our final
conclusions and recommendations for future work.

4

2 Summary of Fall Project and Components

In this chapter we provide some of the fundamental prospects that were explored
during our fall project[31]. We also explore all the mechanical components and
sensors used in our quadcopter. The information in this chapter is useful in order
to read the rest of this report.

2.1 Introduction

During the last fall, the authors of this master thesis had a project regarding
model, design and control of a quadcopter[31]. This report continue with the
work the said report started upon.

We divided the task into four main objectives; design, modelling, control and
estimation. The sensors needed to observe the system states were identified and
implemented using an Arduino Leonardo microcontroller board. The kinematic
and kinetic quadcopter system dynamics were derived, and state space equations
for position, attitude, velocities and angular rates were presented. A control
law were explored for a subspace of the system state with the aim of controlling
the attitude, by minimizing a quadratic cost function. Furthermore a height
controller were deduced, and combined with the attitude controller. Tuning were
performed by simulating the system dynamics without successfully stabilizing the
attitude or altitude in practice.

In order to derive the system model we required knowledge of coordinate sys-
tems, Euler angles, rotation matrices ad transformation matrices. The dynamic
model were derived using classical kinematic laws, and by summarizing forces
and moments for the quadcopter. The model were necessary in order to simulate
the controllers for the aircraft, as well as to explore the different state estimators.

By accurately estimating the attitude, it is possible to ignore most of the
system and measurement noise, which leads to smoother control. To accomplish
this task, a Continuous-Discrete Extended Kalman filter were presented, and
applied to some sensor measurements. By merging different sensor measurements,
we could achieve better estimates, redundancy and drift compensation.

We built a prototype and managed to ascend from the ground by applying only
approximately 35% of the maximal PWM. The remaining motor force available
will be useful for rapid stabilizing and satisfactory control of the quadcopter. The
motors in combination with the Electronic speed controller had a very short time
response compared to other systems.

The quadcopter model, controller, and filters were simulated to allow for con-
troller assessment and tuning on the computer. In the simulator we managed
to achieve our objective of controlling the quadcopter attitude and altitude. We
were unable to test the complete controller on our prototype, as the prototype

5

crashed in an early test procedure, and we were unable to complete the construc-
tion of a new one within our time limit. In addition, a few of the fundamental
aspects required in order to control a quadcopter were implemented successfully
on the microcontroller. Only some sensor specific filters meet the requirements
we currently have for our quadcopter.

The various sensors and components used in our quadcopter platform were
explored and evaluated, and will be briefly summarized here. Some changes have
been made regarding the Arduino microcontroller and range sensor in addition
to including a DC-DC adapter.

2.2 Arduino Due Board

During our project this fall[31] we estimated that an arduino leonardo would be
sufficient for our purposes. We stated that we require a board with sufficient
computer power and memory to be able to compute extended Kalman filter as
well as the optimal control input, while at the same time process input from the
various sensors. During our development we discovered that the arduino leonardo
lacked the necessary SRAM as well as flash memory, and we also started to run
out of pins. For this reason we needed to upgrade to a more powerful board, in
order to ease the development, to allow future upgrades to the software, and to
be able to use the current code without any significant change.

Arduino Leonardo Arduino Due
Operating voltage 5V 3.3V
Input voltage (recommended) 7-12V 7-12V
Input voltage (limits) 6-20V 6-16V
Digital I/O pins 20 54
PWM channels 7 12
Analog input channels 12 12
Flash memory 32 kb 512 kb
SRAM 2.5 kb 96 kb
Clock speed 16 MHz 84 MHz

Table 2.1: Comparison between the arduino Leonardo and arduino Due board

In table 2.1 we have compared the arduino Leonardo[2] and the arduino Due[1]
board specifications, and we can see that the Arduino Due have far superior
specifications considering the number of Digital I/O pins, flash memory, SRAM
and clock speed. The only limitation regarding the Arduino Due comapared to
the Arduino Leonardo is that it has a smaller limit for upper voltage, but our
battery limitations are at 12.6 voltage, and will therefore not be a problem.

6

Based on our requirements the Arduino Due is a good and suitable choice, it
passes all requirements with clear margins, it is not expensive and it is deemed
as a reliable board. The programming language used in Arduino is c, with a huge
number of official libraries that can be used in the code.

Figure 2.1: Arduino Due board

2.3 Motors

We require high quality reliable motors with rapid response in order to control
the quadcopter. If one or several of the motors at some point during a flight
experience any problems it would be devastating for the quadcopter, and can
at worst endanger the quadcopter itself, property and people. Furthermore it is
important that the motors are powerful enough to be able to lift the quadcopter
and perform various aerial movements. We also require the motors to have a
fast response in order to ensure a more stable flight. Finally we require that the
motors are close to vibration free, as any vibration will cause noise in our IMU
measurements.

Based on these criterias we decided to acquire the SunnySky Angel A2212
KV800 Brushless Motor G638. It is a brushless motor designed for remote con-
trolled airplanes as well as quadcopters, and are considered to be highly reli-
able. Sunnysky have long experience with motors for RC airplanes and quad-
copters, and their motors are known for being vibration free. According to the
specifications[8], each motor can give a thrust of 820 grams at 136 watt, based on
our ESC (section 2.5) and propellers (section 2.4), which means that our quad-
copter could theoretically fly at approximately 35 percent capacity. This is more
than enough to fulfill our requirements, ant it follows that we could perform quick
movements if necessary, which will make the control sequence more simple.

7

Figure 2.2: Motor used in our quadcopter

2.4 Propellers

The requirements for the propellers are less strict than those for the motors. We
require light propellers with size and lift potential such that the quadcopter can
hover at less then 50 % of the motor capacity. It is also preferable if the propeller
can survive soft bumps. For our quadcopter we choose plastic 10X4.5 propellers
(254mmx114mm) with their light weight. This is a standard propeller used by
many quadcopters. The total length of the propeller is 254mm while the pitch is
114mm.

Figure 2.3: Propellers used in our quadcopter

8

2.5 Electric Speed Controller

An electric speed controller (ESC) is an electric circuit with the purpose to vary
an electric motor’s speed[20]. We require that the ESC is fast and reliable for the
same reasons stated for the motors in section 2.3. We choose the SS series 18-20A
ESC developed by Hobbyking which comes with a limited range of programming
functions and are designed to be plug-n-play. This ESC is developed for airplanes
as well as multicopters and are designed to be stable as well as reliable and fast.

Figure 2.4: ESC used in our quadcopter

2.6 Inertial Measurement Unit

Precision and accuracy is important when it comes to Accelerometer and gy-
roscope measurement. We require a 3-axis accelerometer and gyroscope that
provides reliable and accurate data. It is also an advantage if they can be on the
same chip. For this reason we went with the MPU-600, which is a small, thin,
ultralow power, 3-axis accelerometer and gyroscope. The device is very accurate,
as it contains 16-bis analog to digital conversion hardware for each channel[9]. It
measures the static acceleration of gravity in tilt-sensing applications, as well as
dynamic acceleration resulting from motion or shock. The sensor has a ”Digital
motion processor” which can be programmed with firmware and is able to do

9

complex calculations with the sensor values.

Figure 2.5: IMU used in our quadcopter

2.7 Magnetometer

As described in our falls project[31], we know that we can have accurate mea-
surements of both roll and pitch using accelerometer and gyroscope. We also get
an estimate for yaw based on our velocity given by the GPS. This is however
less accurate for our quadcopter, which will mostly hover at zero speed. The
GPS estimates for yaw will be inaccurate when hovering. We can use the data
acquired from the IMU to detect any drift in yaw angle, but this estimation is
useless if we want to turn the quadcopter towards a specific yaw angle.

For this reason we needed to include a compass. We require the compass
to be accurate and reliable, but we accept that it can be magnetic based since
we operate far from the magnetic poles. We choose the MHC5883L Triple axis
compass magnetometer designed for Arduino. This compass will provide suitable
measurements for yaw, and can easily be implemented on our Arduino board.

10

Figure 2.6: Magnetometer used in our quadcopter for yaw estimation

2.8 Range Sensor

In order to get more accurate measurement of our hovering height we decided
to also include a range sensor to be used in combination with the GPS measure-
ments. This provides us redundancy as well are more accurate measurements in
the sensors working area. Accurate measurements are crucial when the quad-
copter hover at low heights as well as landing. We require a range sensor that
gives accurate measurements for heights between 20-100 cm. For that reason we
choose the HC-SR04, which you can see in figure 2.7. This is a simple ultrasonic
sensor developed for arduino that can be used to measure distance by sending
out a ultrasonic sound wave and detecting the return of said sound wave. Ac-
cording to the sensor data sheet[14] the working area is 2-400 cm, which satisfies
our requirements for hovering and landing. During our fall project[31] we used
an IR sensor with a narrower working area, and in addition the IR sensor output
is quite nonlinear and is difficult to translate directly to distance. Both of these
aspects have been improved with this change of range sensor.

11

Figure 2.7: Range sensor used in our quadcopter

2.9 Global Positioning System

In order to get some feedback on our estimated position we need a GPS. We
require a reliable medium accuracy GPS, it is also preferable if the GPS antenna
is small and light. We need a GPS that can provide position data with medium
accuracy, and to be able to re-acquire satellite lock fast in the cases where it
looses the signal. We choose the 3DR uBlox GPS. This is a high performance
GPS designed for multicopters and rovers in particular where GPS accuracy is
paramount. It uses a 5 Hz update rate, which is more than fast enough for the
low speeds our quadcopter operates in.

Figure 2.8: GPS used in our quadcopter

12

2.10 Radio

Radio communication is essential for controlling the quadcopter, as well as for
tuning when testing the controllers and providing data during flight. It can also
serve as a great tool when extending the usage for practical applications. The
radio link needs to run on frequencies dedicated for private use in Norway, and is
required to have 100 meter range, or more in open terrain. The 3DR Radio set
runs on 433 Mhz, which is a standard frequency for private use in Norway. The
range in open terrain is more then sufficient and is well suited for our use. The
set comes with two antennas, one for the computer on the ground and one for
the quadcopter.

Figure 2.9: Radio used for communication

2.11 Voltage Measurement

By measuring the voltage of the battery, we know how much power we have left.
This allows us to land the quadcopter safely when the battery power is low, and
not damage the LiPo battery by discharging it completely. According to the data
sheet for LiPo batteries, a cell is at full power when measuring 4.2 Volt and at
20% power when measuring 3.7 Volt. Since we are using 3 cell batteries, this
means that 100% power equals 12.6 Volt and 20% power equals 11.1 Volt across
the three cells. To measure the voltage, we simply use an analog input pin on the
Arduino board as illustrated in Figure 2.10, where R is chosen as 3MΩ to reduce
the power over the resistor.

13

Figure 2.10: Scheme for voltage measurement

2.12 Power Distribution Board

In order to reduce the number of connections directly to the battery we acquired
a Power distribution board developed by HobbyKing. This board provides a good
solution for power distribution, and the PCB is gold plated for optimal efficiency.
This is an easy ”plug and play” solution where we simply connect all four ESC
to the board, and connect the board directly to the battery.

Figure 2.11: Power distribution board

2.13 Battery

The quadcoter motors and sensors are all powered by using a battery pack. We
require a battery that stays within the input voltage limits of the microcontroller,

14

and that the battery provides enough power to be able to sustain a flight for at
least 10 minutes. We bought the Turnigy 5000mAh 3S 20C Lipo Pack delivered
by HobbyKing. This is a 5000mAh battery which should allow us to have a
normal flight for an estimate of 15 minutes, although the battery voltage needs
to be checked in software. The battery is quire heavy; 412g [3], and is the tradeoff
when choosing such a powerful battery.

Figure 2.12: Battery used in our quadcopter

2.14 DC-DC Power Adapter

During our flight sequences we discovered that the power delivered by the battery
contains a significant amount of noise caused by the motors. This caused some
of the sensors to malfunction, and deliver faulty data. In order to handle this
problem we filter the power through a DC-DC adapter between the battery and
the Arduino Due. We discovered this problem at a quite late stage, and currently
the only available option were to use an Arduino Leonardo as our DC-DC adapter.
Here you simply insert the battery on the input pin on the Arduino Leonardo,
and extract the power from the Vout, which you in turn insert into the input pin
for the Arduino Due.

15

16

3 Coordinate Systems and Quadcopter Theory

3.1 Coordinate Systems

3.1.1 BODY Frame

The quadcopter is navigating in a three dimensional space. The BODY coordi-
nate system (denoted ’b’) is a moving coordinate frame fixed to the quadcopter,
with origin ob in the middle of the aircraft as seen in figure 3.1. The x-axis is
defined to be pointing towards one of the motors, the z-axis pointing out the
bottom of the quadcopter and the y-axis complete the right handed orthogonal
coordinate system. An illustration of this is shown in Figure 3.1.

Figure 3.1: The quadcopter with its BODY coordinate system

3.1.2 North-East-Down, Earth-Centered-Earth-Fixed and Geodetic
Coordinates

The NED coordinate system is the coordinate system we refer to in our daily
life. The x-axis points towards true North, the y-axis towards East, while the
z-axis points downwards normal to the Earth’s surface. The origin of the NED
coordinate system is usually defined as the starting point on the ground where
the quadcopter takes off. The position of the quadcopter is defined as the position
of the BODY origin with respect to the NED origin.

17

Presentation of terrestrial position data is often given in terms of the ellip-
soidal parameters longitude(l), latitude(µ) and height. This is referred to as
Geodetic coordinates.

The ECEF coordinate system is defined to have its origin in the center of the
Earth, the x-axis pointing towards the intersection of 0◦ longitude (Greenwich
meridian) and 0◦ latitude (Equator), the z-axis pointing along Earth’s rotational
axis (North), and the y-axis complete the right handed orthogonal coordinate
system.

Figure 3.2 shows how NED, ECEF and Geodetic coordinates relates to each
other.

Figure 3.2: Geodetic longitude and latitude definition and relation to NED

3.1.3 The Rotation Matrix

In order to transform vectors between different coordinate systems, we use rota-
tion matrices. A rotation matrix R which transforms a vector representation in
frame b to frame a is denoted Ra

b . Generally a rotation matrix R is any matrix
satisfying

RRT = RTR = I, det(R) = 1 (3.1)

This implies that R is orthogonal, and as a consequence the inverse rotation
matrix is given by R−1 = RT . Hence

Ra
b = (Rb

a)−1 = (Rb
a)T (3.2)

18

3.1.4 Rotation Between BODY and NED

To transform between the BODY and NED coordinate systems, we need to find
the rotation matrix Rn

b .
Euler angles are not commutative, and one must choose a sequence of rotation.

In aerospace engineering the convention most widely used is yaw, pitch, roll (zyx-
convention), noted ψ, θ, φ respectively. This implies that the first rotation
corresponds to a yaw rotation, the second a pitch rotation and the last a roll
rotation. Where each independent rotation can be described by the following
rotation matrices[29]

Rz,ψ =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.3)

Ry,θ =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (3.4)

Rx,φ =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (3.5)

From this we can derive the rotation matrix from BODY to NED as

Rn
b (Θnb) = Rz,ψRy,θRx,φ (3.6)

Rn
b (Θnb) =

c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)c(φ)s(θ)
s(ψ)c(θ) c(ψ)c(φ) + s(φ)s(θ)s(ψ) −c(ψ)s(φ) + s(θ)s(ψ)c(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)


(3.7)

where c(∗) = cos(∗), s(∗) = sin(∗) and t(∗) = tan(∗). The calculated matrix gives
the convention from BODY to NED. In some cases it can be useful to transform
from NED to BODY. From Equation 3.2 we have Rb

n = (Rn
b)T , which gives

Rb
n(Θnb) =

 c(ψ)c(θ) s(ψ)c(θ) −s(θ)
−s(ψ)c(φ) + c(ψ)s(θ)s(φ) c(ψ)c(θ) + s(φ)s(θ)s(ψ) c(θ)s(φ)
s(ψ)s(φ) + c(ψ)c(φ)s(θ) −c(ψ)s(φ) + s(θ)s(ψ)s(φ) c(θ)c(φ)


(3.8)

19

3.1.5 Transformation Between Geodetic and NED

In Figure 3.2, we can see how the geodetic coordinates relates to ECEF and
NED coordinates. To transform a geodetic coordinate into NED coordinates,
we must first transform from geodetic to Eearth Centered Earth Fixed(ECEF)
coordinates. Given a geodetic position given as p̂g = [l, µ, h]T , the ECEF
coordinates are given by

p̂e =

(N + h) cos(µ) cos(l)
(N + h) cos(µ) sin(l)

(
r2p
r2e
N + h) sin(µ)

 (3.9)

where N is the radius of curvature in the prime vertical, obtained by

N =
r2
e√

r2
e cos2(µ) + r2

p sin2(µ)
(3.10)

and re and rp are the equatorial and polar Earth radii of the ellipsoid, given as

re = 6378137m (3.11)

rp = 6356752m (3.12)

The measurement can then be transformed into NED coordinates through the
rotation matrix

Rn
e (l, µ) = Rze,lRye,(−µ−π2) =

− sin(µ) cos(l) − sin(µ) sin(l) cos(µ)
− sin(l) cos(l) 0

− cos(µ) cos(l) − cos(µ) sin(l) − sin(µ)


(3.13)

The position in NED coordinates is then given by

p̂n = Rn
e (l, µ)(p̂e − peref) (3.14)

where peref is the ECEF coordinates of the NED origin.

3.2 Quadcopter Dynamics

In order to properly develop a control system for the quadcopter we need an
understanding its physical properties. We need to explore the motor dynamics
and use energy considerations in order to derive the forces and thrusts that the
motors produce.

20

3.2.1 Motor Dynamics

All motors on the quadcopter are assumed identical, therefore we can analyze a
single one without loss of generality. We use electric brushless motors, and the
torque produced by these is given by[10]

τ = Kt(I − I0) (3.15)

where τ is the motor torque, I is the input current, I0 is the current when there
is no load on the motor, and Kt is the torque proportionality constant. The
voltage across the motor is the sum of the back electromotive force (voltage, or
electromotive force, that pushes against the current which induces it [19]) and
some resistive loss[10]

V = IRm +Kvω (3.16)

where V is the voltage drop across the motor, Rm is the motor resistance, ω is the
angular velocity of the motor, and Kv is a proportionality constant (indicating
the back electromotive force generated per RPM). We can use this description of
our motor to calculate the power it consumes.

P = IV =
(τ +KtIo)(KtIoRm + τRm +KtKvω

K2
t

(3.17)

To obtain a simpler model, we will assume a negligible motor resistance. Then
the power becomes proportional to the angular velocity

P ≈ (τ +KtI0)Kvω

Kt
(3.18)

Furthermore, we can simplify our model by assuming that KtI0 � τ . This
assumption is derived from the fact that I0 is the current when there is no load,
which is rather small[10]. Thus we obtain our final, simplified equation for power

P ≈ Kv

Kt
τω (3.19)

3.2.2 Thrust Generated by the Propellers

The power generated is used to keep the quadcopter aloft. By conservation of
energy, we know that the energy the motor produces in a given time period is
equal to the force generated on the propeller times the distance that the air it
displaces moves (P · dt = T · dx). Equivalently the power is equal to the thrust
times the air velocity (P = T dx

dt)[10]

P = Tvh (3.20)

21

We assume that the free stream velocity (v∞) is zero (the air in the surrounding
environment is stationary relative to the quadcopter). Momentum theory gives
us the equation for hover velocity as a function of thrust

vh =

√
T

2ρA
(3.21)

where ρ is the density of the surrounding air and A is the area swept out by the
rotor. Using the simplified Equation 3.20 for power, we can then write

P =
Kv

Kt
τω =

KvKτ

Kt
Tω =

T
3
2

√
2ρA

(3.22)

In the general case, we got that τ = ~r × ~F , but in this case the torque is pro-
portional to the thrust T by some constant radio Kt determined by the blade
configuration parameters[10]. Solving the thrust magnitude T , we obtain that
thrust is proportional to the square of angular velocity of the motor, similar to
the the results in the falls project [31]

T =
(KvKτ

√
2ρA

Kt
ω
)2

= kω2 (3.23)

where k is some appropriately dimensioned constant. We find that the total
thrust of the quadcopter (in the body reference frame) is given by

T b =

4∑
i=1

Ti = k

 0
0∑4

i=1 ω
2
i

 (3.24)

If the quadcopter reaches high speeds, the air drag will also have a considerable
impact. The drag can then be modeled as

FD =

 c1sign(U)(U)2

c2sign(V)(V)2

c3sign(W)(W)2

 (3.25)

where

sign(a) =

 -1 if a < 0
0 if a = 0
1 if a > 0

(3.26)

22

3.2.3 Torques Generated by the Propellers

Each rotor contributes some torque about the yaw axis and either the roll or pitch
axes. The drag equation from fluid dynamics gives us the frictional force[10]

Fd =
1

2
ρCDAv

2 (3.27)

where ρ is the surrounding air density, A is the reference area(propeller cross-
section, not area swept out by the propeller), and CD is a dimensionless constant.
This implies that the torque due to drag is given by

τD =
1

2
RρCdAv

2 =
1

2
RρCDA(ωR)2 = bω2 (3.28)

where ω is the angular velocity of the propeller, R is the radius of the propeller,
and b is some appropriately dimensioned constant. We assumed that all the force
is applied at the tip of the propeller, which is inaccurate. However, the only
result that matters for our purposes is that the drag torque is proportional to
the square of the angular velocity. This is in fact the same relationship we found
for the thrust. We can then write the complete torque generated about the yaw
axis for the motors as[10]

τψ = bω2 + IM ω̇ (3.29)

where IM is the moment of inertia about the motor yaw axis, ω̇ is the angular
acceleration of the propeller, and b is our drag coefficient. When the quadcopter
hovers at a constant height we will have ω̇ ≈ 0, since the propellers will spin
with approximately constant thrust, only slightly varied in order to keep a stable
attitude. Thus ignoring this term, simplifies the expression to

τψ = (−1)i+1bω2
i (3.30)

where the (−1)i+1 term is positive for the ith propeller if the propeller is spin-
ning clockwise and negative if it is spinning counterclockwise. The total torque
generated about the yaw axis is given by the sum of all the torques generated by
each propeller.

τψ = b(ω2
1 − ω2

2 + ω2
3 − ω2

4) (3.31)

The roll and pitch torques are derived from standard mechanics[10]. We can
arbitrarily choose the i = 1 and i = 3 motors to be on the roll axis

τφ =
∑

r × T = L(kω2
1 − kω2

3) = Lk(ω2
1 − ω2

3) (3.32)

Correspondingly, the pitch torque is given by a similar expression

τθ =
∑

r × T = L(kω2
2 − kω2

4) = Lk(ω2
2 − ω2

4) (3.33)

23

where L is the distance from the center of the quadcopter to any of the four
propellers. All together, we can describe the torques in the body reference frame
as

τ b =

 Lk(ω2
1 − ω2

3)
Lk(ω2

2 − ω2
4)

b(ω2
1 − ω2

2 + ω2
3 − ω2

4)

 (3.34)

The thrust and torque forces we have derived so far are highly simplified. We
have made assumptions and simplifications, and ignored a multitude of advanced
effects that contribute to the highly nonlinear dynamics of the quadcopter. We
have ignored the rotational drag forces (our rotational velocities are relatively
low), blade flapping (deformation of the propeller blades due to high velocities
and the fact that the propeller consist of a thin flexible material), surrounding
fluid velocities (wind and other disturbances created by both the quadcopter and
its environment) to mention a few.

3.2.4 Equations of Motion

In the inertial (NED) frame, the acceleration of the quadcopter is due to thrust
generated by the motors, gravity and air drag. We can obtain the thrust vector in
the inertial frame by using our rotation matrix Rnb to map the thrust vector from
the body frame to the inertial frame. Thus, the linear motion can be summarized
as

mẍ =

 0
0
−mg

+Rnb T
b + FD (3.35)

where ~x is the position of the quadcopter, g is the acceleration due to the gravity,
FD is the drag force (equation 3.27), and T b is the thrust vector in the body frame
(equation 3.24). While it is convenient to have the linear equations of motion
in the inertial frame, the rotational equations of motion are useful to us in the
body frame so that we can express rotations about the center of the quadcopter
instead of about our inertial center (typical initial position for the quadcopter).
We derive the rotational equations of motion from Euler’s equations for rigid
body dynamics. Expressed in vector form, Euler’s equations are written as [10]

Iω̇ + ω × (Iω) = τ (3.36)

where ω is the angular velocity vector, I is the inertia matrix, and τ is a vector
of external torques. We can rewrite this as

ω̇ =

ω̇xω̇y
ω̇z

 = I−1(τ − ω × (Iω)) (3.37)

24

We can model our quadcopter as two thin uniform rods crossed at the origin
with a point mass (motor) at the end of each, and ignore the various components
located close to the center of the quadcopter, including the battery. With this
simplification in mind, it’s clear that the symmetries result in a diagonal inertia
matrix of the form

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (3.38)

Using this we obtain our final result for the body frame rotational equations of
motion

ω̇ =

τφI−1
xx

τθI
−1
yy

τψI
−1
zz

−

Iyy−Izz
Ixx

ωyωz
Izz−Ixx
Ixx

ωxωz
Ixx−Iyy
Ixx

ωxωy

 (3.39)

3.2.5 Kinematic Model

The dynamic 6 DOF kinematic model of the quad-copter can be expressed in
vector form as [31]

η̇ = JΘ(η)ν (3.40)

m[
Ṗ
n

b/n

Θ̇nb

]
=

[
Rn
b (Θnb) 03x3

03x3 TΘ(Θnb)

] [
vbb/n
ωbb/n

]
(3.41)

Where the notation vbb/n represents velocity of the BODY origin ob with respect to

NED in {b}, and thus Ṗ
n

b/n is the NED velocity vector for the BODY with respect

to NED. ωbb/n = [p, q, r] is the body-fixed angular velocity vector, Rn
b (Θnb) is the

rotation matrix from BODY to NED, and Θnb = [φ, θ, ψ] are the Euler angles
from NED to BODY. For easier notation, Θ = Θnb. Furthermore

T(Θ) =

1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 (3.42)

3.2.6 Kinetic Model

The 6DOF kinetic model of the quad-copter can be expressed in vector form
as [31]

MCG
RB

[
v̇bg/n
ω̇vb/n

]
+ CCG

RB

[
vbg/n
ωbb/n

]
=

[
fbg
mb
g

]
(3.43)

25

or [
mI3x3 03x3

03x3 Ig

]
︸ ︷︷ ︸

MCG
RB

[
v̇bg/n
ω̇bb/n

]
+

[
mS(ωbb/n) 03x3

03x3 −S(Igω
b
b/n)

]
︸ ︷︷ ︸

CCGRB

[
vbg/n
ωbb/n

]
=

[
fbg
mb
g

]
(3.44)

26

4 Filter Designs

4.1 Theory

4.1.1 Low-pass Filter

A low-pass filter is a filter that passes signals with a frequency lower than a certain
cut-off frequency, and is thus useful for filtering signals with high frequency noise.
A simple first order unity gain low-pass filter can be described by the transfer
function

Glp(s) =
1

τs+ 1
(4.1)

where τ is the filter time constant. The cut-off frequency is then given by fc = 1
πτ

4.1.2 High-pass Filter

A high-pass filter is a filter that passes signals with a frequency above a certain
cut-off frequency, and is thus useful for filtering signals with low frequency noise.
A first order unity gain high-pass filter transfer function is simply the complement
of the transfer function found in Equation 4.1, and is given by

Ghp(s) = 1−Glp(s) =
τs

τs+ 1
(4.2)

4.1.3 Complementary Filter

The term ”complementary filter” is used when referring to a digital algorithm
that ”blends” redundant data from different sensors which exhibit noise with
different frequency content. The filter refers to the use of two or more transfer
functions Gi(s), i = 1 . . . n such that

∑n
i=1 Gi(s) = I, or

∑n
i=1Gi(s) = 1 in

case of a one-dimensional filter. Typically with a two-input system, one input
provides data with low frequency noise, and is thus high-pass filtered, while the
other input provides data with high frequency noise, and is thus low-pass filtered.
Mathematically, if the low-pass and high-pass filters are complements, the output
of the filter is the complete reconstruction of the signal, minus the noise associated
with the sensors. The complementary filter applied to a two-input system with
signals y1 and y2, where y1 contains high frequency noise and y2 contains low-
frequency noise, is given by

Ycf = Glp(s)Y1 +GhpY2 (4.3)

27

4.1.4 Continuous-discrete Extended Kalman Filter

The extended Kalman filter is the nonlinear version of the Kalman filter. The
Kalman filter, also known as linear quadratic estimation (LQE), is an algorithm
that fuses related measurements observed over time, and produces estimates of
unknown variables. The filter assumes that the system dynamics are given by
the non-linear system dynamics

ẋ = f(x,u) + ξ (4.4)

y(tn) = h(x(tn),u(tn)) + η(tn)

where y(tn), x(tn) and u(tn) are the nth samples of y, x and x respectively. ξ
is a vector of zero-mean Gaussian random processes with covariance matrix Q,
and η(tn) is a vector of zero-mean Gaussian random variables with covariance R.
R can usually be determined from sensor data, while Q is generally unknown.
Therefore Q is usually looked upon as a tuning matrix. The Continuous-discrete
Extended Kalman filter accounts for sampled sensor readings by propagating the
system model and the covariance of the estimation error P, between samples
using the equations [28]

˙̂x = Ax̂ + Bu

A =
∂f

∂x
(x̂,u) (4.5)

Ṗ = AP + PAT + Q

where x̂ is the estimate of x, and then update the estimation for each sensor, i,
when a measurement is received using

Ci =
∂hi
∂x

(x̂,u)

Li = PCT
i (Ri + CiPCT

i)−1 (4.6)

P = (I− LiCi)P

x̂ = x̂ + L(y(tn)− h(x̂,u))

More information can be found in Fossen [29]

4.2 Problem Description

To reduce the noise from the sensors readings, filters can be applied to the data.
Different sensors possess different noise characteristics, and therefore require dif-
ferent filters. Redundant sensor data can be combined, and knowledge of the
system model can be used to obtain even better results. The filter equations

28

above however, are not well suited for implementation on a microcontroller, as
they are continuous or contains matrix operations. We will now explore how
these filters can be implemented in C on the Arduino microcontroller.

4.3 Discrete Implementation

4.3.1 Low-pass Filter

Low-pass filtering a one-dimensional signal using the transfer function given in
Equation 4.1, yields

Ylp =
1

τs+ 1
Y (4.7)

Ylp(τs+ 1) = Y (4.8)

⇓ L−1

ẏlpτ + ylp = y (4.9)

Backwards difference approximation is given by

ẋ ≈ x[n]− x[n− 1]

h
(4.10)

where x[n] is the nth sample of x, and h is the time between samples. Applying
backward difference approximation to Equation 4.9, which gives

ylp[n]− ylp[n− 1]

h
τ + ylp[n] = y[n] (4.11)

m

ylp[n] =
τ

τ + h
ylp[n− 1] +

h

τ + h
y[n− 1] (4.12)

where h is the time between samples. This can be simplified by defining

a =
τ

τ + h
(4.13)

⇓
h

τ + h
= 1− a (4.14)

where a can be set to a constant value, and is considered a tuning parameter.
Hence, a simple unity gain low-pass filter in discrete form, is given by

ylp[n] = aylp[n− 1] + (1− a)y[n] (4.15)

which can be implemented in C-code.

29

4.3.2 High-pass Filter

High-pass filtering a one-dimensional signal using the transfer function given in
Equation 4.2, yields

Yhp =
τs

τs+ 1
Y (4.16)

Yhp(τs+ 1) = τsY (4.17)

⇓ L−1

ẏhpτ + yhp = τ ẏ (4.18)

Discretization using backward difference approximation, gives

yhp[n]− yhp[n− 1]

h
τ + yhp[n] =

y[n]− y[n− 1]

h
τ (4.19)

where h is the time between samples. With a defined as in Equation 4.13, the
filter takes the form

yhp[n] = ayhp[n− 1] + a(y[n]− y[n− 1]) (4.20)

which can be implemented in C-code.

4.3.3 Complementary Filter

The complementary filter Equation 4.3 can be written

Ycf =
1

τs+ 1
Y1 +

τs

τs+ 1
Y2 (4.21)

Ycf (τs+ 1) = Y1 + τsY2 (4.22)

⇓ L−1

ẏcfτ + ycf = y1 + τ ẏ2 (4.23)

Discretization using backward difference approximation yields

ycf [n]− ycf [n− 1]

h
τ + ycf [n] = y1[n] +

y2[n]− y2[n− 1]

h
τ (4.24)

where h is the time between samples. With a defined as in Equation 4.13, the
filter takes the form

ycf [n] = aycf [n− 1] + (1− a)y1[n] + a(y2[n]− y2[n− 1]) (4.25)

which can be implemented in C-code.

30

4.3.4 Continuous-discrete Extended Kalman Filter

To allow simple usage of the filter, we decided to turn the filter Equations 4.5
and 4.6 into a C library. By making the functions general with respect to the
number of states and measurements, and making the state and measurement
propagation matrices interchangeable, the filter can be applied to a wide variety
of systems. Since there is no built-in matrix support in C, an open source matrix
math library made by Charlie Matlack [7] enabled us to do the necessary matrix
operations. Below is a pseudo code example of how the library can be used

Define functions:

void f_func(float* x_hat , float* u, float h){
propagate x_hat

}
void df_dx(float* A, float* x_hat , float* u){

A = df/dx(x_hat ,u)
}
void h_func(float* H, float* x_hat , float* u){

H = h(x_hat ,u)
}
void dh_dx(float* C, float* x_hat , float* u){

C = dh/dx(x_hat ,u)
}

void Android loop(){
n = number of states
m = number of measurements

initialize:
x_hat[n][1] = initial state guess
P[n][n] = initial P matrix
Q[n][n] = system states covariance matrix
R[m][m] = measurement covariance matrix

loop:
h = loop time
u = current system input
call Kalman.kalmanPredict (*f_func , *df_dx , (float*) x_hat , (float*) u, (

float*) P, (float *) Q, h, n);

if (new sensor measurements) {
z[m][1] = new sensor measurements
h2 = time between sensor measurements
call Kalman.kalmanMeasurement (*h_func , *dh_dx , (float*) x_hat , (float

) u, (float) z, (float*) P, (float *) R, n, m);
}

}

4.4 Discussion

Comparing the filter equations; the high-pass, low-pass and complementary filters
are all very simple to implement. The Kalman filter matrices also grow expo-
nentially with the number of states and the number of measurements. However,
the Kalman filter takes advantage of the system model, and therefore should in

31

theory result in better results.

4.5 Recommendations and Future Work

To improve the Kalman library, the P, Q and R matrices could be set as private
variables, along with necessary initializing functions. Improvements made to the
matrix math library could also be made, by taking advantage of the fact that
some of the matrices are diagonal.

32

5 Estimation of Roll and Pitch

An inertial measurement unit is composed of an accelerometer and a gyroscope.
The accelerometer measures the accelerations along the x, y and z axes in BODY
coordinates, and the gyroscope measures the angular speed around the axes.

5.1 Theory

5.1.1 Gravity Vector

The Earth’s gravity vector in NED coordinates can be estimated as

gn =

 0
0

9.81

 (5.1)

5.1.2 Accelerometer Measurement Model

The measurement model, what the accelerometer measures, for the accelerometer,
can be found using Newton’s second law, which yields

abimu =
1

m
(Ftot − Fg) + ηacc (5.2)

where Fg = mRb
n(Θ)gn, Ftot = mv̇bb/n +mωbb/n × vbb/n and ηacc = bbacc + wb

acc.

bbacc is a sensor bias vector and wb
acc is a sensor noise vector. Insertion yields

abimu = v̇bb/n + ωbb/n × vbb/n −Rb
n(Θ)gn + η (5.3)

A simplified measurement model is obtained by approximating v̇bb/n = vbb/n ×
ωbb/n = 03×1. This simplification necessary as the accelerometer can not differ-
entiate between the different forces acting on it. Expressed in component form
this gives

ax = g sin(θ) + ηx

ay = −g cos(θ) sin(φ) + ηy (5.4)

az = −g cos(θ) cos(φ) + ηz

5.1.3 Gyroscope Measurement Model

The measurement model for the gyroscope when the accelerometer is placed in
the center of gravity, is simply found as

ωbimu = ωbb/n + bbgyro + wb
gyro (5.5)

33

5.2 Problem Description

To simplify the readings from the IMU, the data should be scaled to obtain
the accelerometer and gyroscope measurements in m/s and rad/s respectively.
Furthermore, accelerometer and gyroscope bias should be estimated and removed.
Using the resulting accelerometer and/or gyroscope readings, we want to obtain
fast, smooth, and close to bias-free roll and pitch estimates.

5.3 Design of Solution

5.3.1 Inertial Measurement Unit Sensitivity Range and Scaling

The MPU6050 features four different sensitivity ranges for the accelerometer and
the gyroscope, with four resulting scale factors. For the accelerometer these are
given as

Sensitivity range Units Scaling factor
±2 g 16384
±4 g 8192
±8 g 4096
±16 g 2048

Table 5.1: Sensitivity ranges and scales, accelerometer

and for the gyroscope

Sensitivity range Units Scaling factor
±250 ◦/s 131
±500 ◦/s 65.5
±1000 ◦/s 32.8
±2000 ◦/s 16.4

Table 5.2: Sensitivity ranges and scales, gyroscope

The default sensitivity of the accelerometer and gyroscope are 2g and 250◦/s
respectively, which is suitable for our purpose. Hence to transform the sensor
data into units of gravity and units of degrees per second, the accelerometer
and gyroscope measurements must be divided by 16384 and 131 respectively.
Furthermore, to obtain the acceleration in meters per second, the accelerometer
sensor data must be multiplied by 9.81 m/s.

34

5.3.2 Accelerometer Bias Compensation

The accelerometer bias vector bbacc can be estimated by placing the accelerometer
such that φ ≈ θ ≈ 0. From the simplified measurement model Equations 5.4, an
expression for the bias can then be found as

abacc = −Rb
n(Θ)gn + bbacc + wb

acc (5.6)

= −gn + bbacc + wb
acc (5.7)

m (5.8)

bbacc = abacc + gn −wb
acc (5.9)

By sampling enough data, and averaging the resulting measurements, the effect of
the white noise vector wb

acc is mitigated, and an estimate of bbacc can be obtained.

5.3.3 Gyroscope Bias Compensation

The gyroscope bias vector bbgyro can be estimated by placing the IMU on a

table such that ωbb/n = 03×1. From the measurement model Equation 6.2, an
expression for the bias can then be found as

ωbgyro = bbgyro + wb
gyro (5.10)

bbgyro = ωbgyro − vekwbgyro (5.11)

By sampling enough data, and averaging the resulting measurements, the effect
of the white noise vector wb

gyro can be mitigated, and an estimate of bbgyro can
be obtained.

5.3.4 Accelerometer Estimate

Using the simplified accelerometer model Equations 5.4 and solving for φ and θ
gives

φacc = tan−1(
ay
az

) (5.12)

θacc = sin−1(
ax
g

) (5.13)

The accelerometer is very sensitive to vibrations and contains a fair amount of
high frequency noise. An improvement to the estimate can thus be made by
filtering the data using the low-pass filter Equation 4.15, found in Section 4.3.

35

5.3.5 Gyroscope Estimate

The roll and pitch angles can be estimated from the gyroscope readings as

φgyro =

∫ t

0

p(τ)dτ (5.14)

θgyro =

∫ t

0

q(τ)dτ (5.15)

or discretely, using Euler’s method, as

φgyro[n] = φgyro[n− 1] + h · p (5.16)

θgyro[n] = θgyro[n− 1] + h · q (5.17)

where h is the time between samples. The gyroscope measurements suffer from
low frequency random walk noise, which accumulates when integrated in the
angle estimates above. To mitigate some of this effect, the data can be filtered
using the high-pass filter Equation 4.20, found in Section 4.3.

5.3.6 Complementary Filter Estimate

By combining the accelerometer and gyroscope estimate through the complemen-
tary filter Equation 4.25, where y1 represents the accelerometer estimate and y2

represents the gyroscope estimate, we obtain the following roll and pitch estimate
equations

φ[n] = aφ[n− 1] + (1− a)φacc[n] + a(φgyro[n]− φgyro[n− 1]) (5.18)

θ[n] = aθ[n− 1] + (1− a)θacc[n] + a(θgyro[n]− θgyro[n− 1]) (5.19)

A simpler implementation which directly integrates the gyroscope Equations 5.16
into the complementary filter, is obtained by inserting φgyro[n] = φ[n] + h · p,
φgyro[n− 1] = φ[n− 1], θgyro[n] = θ[n] + h · q and θgyro[n− 1] = θ[n− 1]; which
yields

φ[n] = a(φ[n] + h · p) + (1− a)φacc (5.20)

θ[n] = a(θ[n] + h · p) + (1− a)θacc (5.21)

where h is the time between samples, and a is the filter design parameter.

5.3.7 Kalman Filter Implementation

Another solution which combines the accelerometer and gyroscope measurements,
can be obtained from the Extended Kalman Filter as described in Section 4.1.4

36

and 4.3.4. The Kalman filter requires the system propagation functions and the
resulting jacobian matrices. From the kinetic Equations 3.41 we have

φ̇ = p+ q sin(φ) tan(θ) + r cos(φ) tan(θ) + ξφ (5.22)

θ̇ = q cos(φ)− r sin(φ) + ξθ (5.23)

Using the simplified measurement model Equations 5.4 and defining x = (φ, θ)T ,
y = (ax, ay, az)

t, u = (p, q, r, u, v, w)T and ξ = (ξφ, ξθ)
T , yields

ẋ = f(x,u) + ξ (5.24)

y = h(x,u) + η (5.25)

where

f(x,u) =

[
p+ q sin(φ) tan(θ) + r cos(φ) tan(θ)

q cos(φ)− r sin(φ)

]

h(x,u) =

 g sin(θ)
−g cos(θ) sin(φ)
−g cos(θ) cos(φ)


which yields the Jacobians

∂f

∂x
=

[
q cos(φ) tan(θ)− r sin(φ) tan(θ) q sin(φ)−r cos(φ)

cos2(θ)

−q sin(φ)− r cos(φ) 0

]

∂h

∂x
=

 0 g cos(θ)
−g cos(φ) cos(θ) g sin(φ) sin(θ)
g sin(φ) cos(θ) g cos(φ) sin(θ)


Furthermore, the Kalman filter requires that we define the matrices x0, P,

Q and R. Assuming that we start on a relative flat surface, we set x0 = 0 and
P = I3×3 · 0.1. Q and R are tuning matrices.

5.4 Observations and Results

A comparison between the accelerometer estimate, the gyroscope estimate, the
complementary estimate and the extended Kalman filter estimate, can be seen
in Figure 5.1. Here, α = 0.98 in the Complementary filter, and we found Q =
~I2×2 · 2e−5 and R = I3×3 · 0.8 to give satisfactory results in the Kalman filter.
The samples were taken the 11th of April 2015, with two motors running to see
how the motor forces would effect the readings.

37

20 21 22 23 24 25 26 27 28 29
−100

−50

0

50

100
Accelerometer estimate of the pitch angle

time(s)

an
gl

e(
de

gr
ee

s)

20 21 22 23 24 25 26 27 28 29

−30

−20

−10

0

10

20
Gyroscope estimate of the pitch angle

time(s)

an
gl

e(
de

gr
ee

s)

20 21 22 23 24 25 26 27 28 29

−30

−20

−10

0

10

20
Complementary vs Kalman estimate of the pich angle

time(s)

an
gl

e(
de

gr
ee

s)

Kalman
Complementary

Figure 5.1: A comparison between the different estimates

5.5 Discussion and Conclusion

The accelerometer measures all forces acting on the quadcopter and not only the
gravity vector. Hence when the quadcopter is accelerating or turning in any way,
this will affect the estimates. Motor vibrations also cause great disturbances in

38

the estimate, which can be seen in the first graph in Figure 5.1. In the long term,
however, the accelerometer measurements can be used to obtain a very rough
estimate of the angle.

The gyroscope is great at detecting rapid changes in rotation, but if there is
a bias in the measurements, simply integrating the rotation rate will result in an
increasing bias error over time, which can be seen when comparing the gyroscope
estimate in the middle graph with the estimates in the lowest graph in Figure 5.1.

The Complementary Filter does a decent job at combining the gyroscope and
the accelerometer readings, which can be seen in the last graph in Figure 5.1. The
estimate is close to bias-free, but is however affected by the noisy accelerometer
estimate.

The Extended Kalman Filter estimate is not only smoother than the Com-
plementary Filter estimate, but it appears to react slightly faster to changes in
the angle, which can be seen in the last graph in Figure 5.1. When compared to
the gyroscope estimate, the smoothness and speed has been maintained, while
the bias has been removed, which is exactly the results we had hoped for.

In conclusion, if computational power does not pose an issue, the Kalman
filter estimate is the best option.

5.6 Recommendations and Future Work

If the quadcopter is to perform acrobatic maneuvers, we would recommend using
quaternions instead of Euler angles to describe the attitude of the quadcopter.
The quaternion approach is harder to understand and therefore harder to imple-
ment, but the quaternion model does not have singularities at θ = ±90◦ and it
may also yield somewhat faster computations.

39

40

6 Estimation of Yaw

6.1 Theory

A magnetometer is a sensor that measures the strength of the local magnetic
field. The HMC5883L measures the magnetic strength in three axes, which can
be be used to achieve tilt compensated yaw estimation. The local magnetic field
is dependent on the Earth’s magnetic field and any magnetic fields created by
nearby objects.

6.1.1 Magnetometer measurement model

The magnetometer measurement model can be expressed as

mb
mag = D−1

(
Rb
n(Θ)mn + bbmag

)
+ wb

mag (6.1)

where Rb
n(Θ) is the rotation matrix from NED to BODY with respect to the

attitude Θ, bbmag is the magnetometer bias from hard iron distortions, wb
mag is

a measurement noise vector and D depends on soft iron distortions. The vector
mn is the output from the magnetometer in NED coordinates when all angles are
zero, and the x-axis of the NED coordinate system is pointing towards magnetic
north.

6.1.2 Gyroscope Measurement Model

The measurement model for the gyroscope when the accelerometer is placed in
the center of gravity, is simply found as

ωbimu = ωbb/n + bbgyro + wb
gyro (6.2)

6.1.3 Earth’s Magnetic Field

The Earth’s magnetic field is a magnetic dipole with ends near the geographic
North- and South- Poles. The magnetic strength varies across the earth, along
with the inclination of the magnetic directional vector. For most practical pur-
poses, the magnetic field can be considered constant with respect to time.

The magnetic north is not located at the true north pole, but is ”split up”
into two different centers close to the true north. Which of the two magnetic
centers influence the magnetometer the most, is dependent on where you are
located on Earth. This can be seen in Figure 6.1, where the magnetometer north
will be pointing upwards, normal on the intensity contour lines. In this figure the
inclination of the north vector can also be seen. In Trondheim, the declination
angle is approximately 2◦.

41

 GEOGRAPHIC COORDINATE

0
15

30

45

60

75
9
0

10
5

12
0

13
5

15
0

165
180

195

210

225

240

255
2
7
0

285

300

315

330

345

30

40

50

60

70

80

 TOTAL INTENSITY (nT)

YEAR= 2015.0 MODEL= IGRF12 C ontour I nterval =2000

:40000

56000

52000

48000

44000

6165259015

Figure 6.1: Total magnetic intensity

42

6.1.4 Hard and Soft Iron Distortions

The magnetic measurements will be subjected to mainly two types of distortions;
hard iron and soft iron. Hard iron distortions are caused by nearby objects with
magnetic fields, which create somewhat constant bias terms on the magnetometer
readings. Soft iron distortions are considered alterations in the existing magnetic
fields, stretching the magnetic field relative to the sensor. Hard iron distortions
contributes the most to the total sensor error. To visualize the two different
distortions and their effect on the magnetometer output, we illustrate the different
effects using 2D plots of the mx and my outputs.

With no distortions in the magnetic field, a plot of mx versus my will simply
be a circle with a center at the origin and radius equal to the intensity of the
magnetic field in the x-y plane. This is illustrated in Figure 6.2.

Hard iron distortions causes the center of the circle to change. An illustration
of the effects caused by hard iron distortions can be seen in Figure 6.3.

Soft iron distortions causes the circle to stretch into an ellipse. Soft iron
distortions have no effect on the center of the ellipse. An illustration of the
effects caused by a combination of hard and soft iron distortions can be seen in
Figure 6.4.

−500 0 500

−600

−400

−200

0

200

400

600

No distortions

m
x

m
y

Figure 6.2: Magnetic measurement with no distortions

43

−500 0 500

−600

−400

−200

0

200

400

600

Hard iron distortions

m
x

m
y

Figure 6.3: Magnetic measurement with hard iron distortions

−500 0 500

−600

−400

−200

0

200

400

600

Hard and soft iron distortions

m
x

m
y

Figure 6.4: Magnetic measurement with hard and soft iron distortions

6.2 Problem Description

The hard and soft iron distortions should be removed from the magnetometer
measurements. Furthermore, the magnetometer sensor readings are dependent
on the roll and pitch angles of the quadcopter. The readings should therefore be
tilt compensated. Using the resulting magnetometer readings and the gyroscope
readings, we want to obtain a fast, smooth and close to bias free yaw angle
estimate.

44

6.3 Design of Solution

6.3.1 Hard and Soft Iron Distortions Compensation

Hard iron distortions can be estimated by sampling data from almost all atti-
tudes and taking the maximum and minimum from each measurement axis before
taking the average, resulting in

bx =
1

2
·
(

min
i

(mb
mag(1, i)) + max

i
(mb

mag(1, i))
)

(6.3)

by =
1

2
·
(

min
i

(mb
mag(2, i)) + max

i
(mb

mag(2, i))
)

(6.4)

bz =
1

2
·
(

min
i

(mb
mag(3, i)) + max

i
(mb

mag(3, i))
)

(6.5)

The soft iron distortions are not as easily found. Instead of determining all the
elements in the soft iron distortion matrix, we can obtain an estimate by approx-
imating D as a diagonal matrix. The diagonal elements can then be estimated
as

d11 =
d̄

d̄x
(6.6)

d22 =
d̄

d̄y
(6.7)

d33 =
d̄

d̄z
(6.8)

where d̄ is the average distance from the center to the data points representing
the circle, and d̄i is half the distance between the maximum and minimum sensor
values on the i axis. These can be estimated as

d̄x =
1

2
· (max

i
(mb

mag(1, i))−min
i

(mb
mag(1, i))) (6.9)

d̄y =
1

2
· (max

i
(mb

mag(2, i))−min
i

(mb
mag(2, i))) (6.10)

d̄z =
1

2
· (max

i
(mb

mag(3, i))−min
i

(mb
mag(3, i))) (6.11)

d̄ =
d̄x + d̄y + d̄z

3
(6.12)

By defining m as the output from the magnetometer with hard and soft iron
distortions removed, we have

m = D(mb
mag − bbmag) (6.13)

45

By combining Equation 6.1 and 6.13, we then get a measurement model for the
calibrated magnetometer output as

m = Rb
n(Θ)mn + wb

mag (6.14)

6.3.2 Magnetometer Estimate

Given zero roll and pitch angles, the magnetic heading angle ψm satisfies the
equation

tan(ψm) =
my

mx
(6.15)

When roll and pitch are known, we can transform the magnetometer readings
to the horizontal plane, satisfying the equation above. This can be done by
multiplying the magnetometer readings with the rotation matrices for roll and
pitch, givingmh

x

mh
y

mh
z

 = Ry,θRx,φ

mx

my

mz

 (6.16)

m (6.17)mh
x

mh
y

mh
z

 =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

mx

my

mz

 (6.18)

We can then find ψm using Equation 6.15. The sign of the arguments mh
x and

mh
y must be taken into account, giving

ψm =



180◦ − 180◦

π arctan(
mhy
mhx

) if mh
x < 0

− 180◦

π arctan(
mhy
mhx

) if mh
x > 0, mh

y < 0

360− 180◦

π arctan(
mhy
mhx

) if mh
x > 0, mh

y > 0

90◦ if mh
x = 0, mh

y < 0
270◦ if mh

x = 0, mh
y > 0

(6.19)

To obtain the true North heading, ψ, the declination angle (which is 2◦ in Trond-
heim) must be added to the magnetic heading.

46

6.3.3 Gyroscope Estimate

The yaw angle can be estimated from the gyroscope readings as

ψgyro =

∫ t

0

r(τ)dτ (6.20)

(6.21)

or discretely, using Euler’s method, as

ψgyro[n] = ψgyro[n− 1] + h · r (6.22)

(6.23)

where h is the time between samples. The gyroscope measurement suffers from
low frequency random walk noise, which accumulates when integrated in the
angle estimate. To mitigate some of this effect, the data can be filtered using the
high-pass filter Equation 4.20, found in Section 4.3.

6.3.4 Combined Magnetometer and Gyroscope

To obtain more accurate estimates, the magnetometer readings can be merged
with the gyroscope readings using the extended Kalman filter as described in
Section 4.1.4 and 4.3.4. The Kalman filter requires the system propagation func-
tions and the resulting jacobian matrices. The non-linear propagation model for
yaw, ψ, is found from Equation 3.41 as

ψ̇ =
sin(φ)

cos(θ)
q +

cos(φ)

cos(θ)
r + ξψ (6.24)

where ξψ represents a system model disturbance. Defining x = ψ, y = m,
u = (φ, θ, q, r) and using the magnetometer measurement model found in Equa-
tion 6.14, we have

ẋ = f(x,u) + ξψ (6.25)

y = h(x,u) + wb
mag (6.26)

where

f(x, u) =
sin(φ)

cos(θ)
q +

cos(φ)

cos(θ)
r (6.27)

h(x,u) = Rb
nΘ)mn (6.28)

47

Furthermore, we have the Jacobians

∂f

∂x
= 0 (6.29)

∂h

∂x
=

 − cos(θ) sin(ψ)m1

(− cos(θ) cos(ψ)− sin(φ) sin(θ) sin(ψ))m1

(sin(φ) cos(ψ)− cos(φ) sin(θ) sin(ψ))m1

 (6.30)

Furthermore, the Kalman filter requires that we define the matrices x0, P, Q
and R. Since we do not know the heading when we start up, we set x0 = 0 and
P = I3×3. Q and R are tuning matrices.

6.4 Observations and Results

6.4.1 Hard and Soft Iron Calibration

To compensate for the hard and soft iron distortions, we had to gather data points
from the magnetometer from all possible attitudes. By turning the magnetometer
around in space and sending the data over serial to Matlab, we then used the
data to estimate the hard and soft iron distortions as described in Section 6.3.1.
The resulting output of the magnetometer before and after calibration, can be
seen in Figure 6.5.

−500 0 500
−500

0

500

m
x

m
y

−500 0 500
−500

0

500

Before calibration

m
x

m
z

−500 0 500
−500

0

500

m
y

m
z

−500 0 500
−500

0

500

m
x

m
y

−500 0 500
−500

0

500

After calibration

m
x

m
z

−500 0 500
−500

0

500

m
y

m
z

Figure 6.5: Hard and soft iron calibration. Top row: before calibration. Bottom
row: after calibration

48

6.4.2 Yaw Estimates

R was found by analyzing the variance of the magnetometer output, and was
estimated to be R = I3×3 ·0.4. After some tuning, Q was set to Q = 0.0002·I3×3.

A comparison between the Extended Kalman Filter, the gyroscope estimate
and the magnetometer estimate, can be seen in Figure 6.6.

49

0 5 10 15 20 25 30 35 40
−400

−300

−200

−100

0

100

200
yaw kalman estimate

time

de
gr

ee
s

0 5 10 15 20 25 30 35 40
−400

−300

−200

−100

0

100

200
yaw gyroscope comparison

time

de
gr

ee
s

0 5 10 15 20 25 30 35 40
−400

−300

−200

−100

0

100

200
yaw magnetometer comparison

time

de
gr

ee
s

Filtered on Arduino
Filtered in Matlab

pure gyro estimate
kalman estimate

pure magnetometer estimate
kalman estimate

Figure 6.6: Yaw estimates

50

6.5 Discussion and Conclusion

The gyroscope readings can be used to estimate the yaw angle, as shown in the
middle graph of Figure 6.6. However, the estimated angle bias error increases
over time, which is not ideal.

The magnetometer estimate yields great yaw estimates as shown in Figure 6.6.
The angle jumps when moving between 360◦ and 0◦, however this can be easily
handled by the controller through some simple logic.

The Extended Kalman filter estimate which combines the gyroscope readings
and the magnetometer readings, has no apparent improvement over the mag-
netometer estimate. However, the Kalman estimate does provide redundancy
should one of the sensors stop working mid flight. A method of detecting sensor
loss or sensor fault should then be determined.

In conclusion, if limited computing power poses a problem, the magnetometer
readings should be used to estimate yaw, whilst if computing power is not an
issue, the Kalman estimate should be used for redundancy. On the Arduino Due,
limited computing power does not pose an issue, hence why the Kalman estimate
was chosen.

6.6 Recommendations and Future Work

The magnetometer should be calibrated after it has been placed on the quad-
copter, since the wires, the micro-controller and the fastening bolts all disturb
the measurements. When reading magnetometer data for calibration, avoid mov-
ing the magnetometer too close to computers, tables or in general any obstacle
that can disturb the measurements.

An alternative way of setting up the propagation equations for the Kalman
filter, is to use the rotated magnetometer sensor values as input to the filter,
and change the propagation equations for x and y appropriately. This method
could then be compared to the method used above, to see if any improvements
to computing time or angle estimates are obtained.

51

52

7 Estimation of Position

7.1 Theory

7.1.1 Position Measurement from Global Positioning System Tech-
nology

Navstar Global Positioning System(GPS) is a dual-use satellite based system
that provides positioning and timing data to users worldwide. In the late sixties,
the U.S. Air Force and Navy together with the Joint Program Office, laid the
foundation for GPS. Even though the first operational satellite was launched in
1978, it was not until 1993 that initial operational capability was declared, and
full operational capability was declared in 1994. GPS has been a great success
for both military and civil purposes, and can today be found in almost all new
cars and smart-phones.

By receiving radio signals from a satellite, the GPS can determine the distance
travelled by the radio signal. A specific code sequence is sent from the satellite at
time t1 and is received on the GPS at time t2. The GPS then generates its own
code sequence referenced to the internal clock of the GPS. The generated code
sequence is shifted until it’s aligned with the incoming code. The time difference
can then be determined by how much the generated code had to be shifted. An
illustration of this procedure is shown in Figure 7.1. Since the position of the
satellite is known, the position of the GPS can be narrowed to a sphere around the
satellite with radius r1 = (t2 − t1)c, where c is the speed of light. By combining
data from at least four satellites, the position of the GPS can then be determined.
The pseudorange measurement equation is given by

pi =
√

(pnsi − pn)T (pnsi − pn) + cτ∗ + εpi (7.1)

where pnsi ∈ R3 is the position of satellite i, c is the speed of light, τ∗ is the GPS
clock bias, and εpi is measurement noise. The GPS usually gives out a position
estimate based on the pseudoranges, which is given in geodetic latitude, longitude
and height above mean sea level. This relates to NED coordinates as illustrated
in Figure 3.2.

53

Figure 7.1: An illustration of how the time difference is measured

7.1.2 Distance Measurement Using Sound

A sound source combined with an audio receiver, can be used to estimate distance.
By sending out a sound wave and determining the time, tr it takes for the sound
to return. The distance can be estimated as

D =
tr
2

340 (7.2)

where 340 is approximately the speed of sound in air at 20◦.

7.2 Problem Description

Determining the position of the quadcopter can be challenging. The IMU we
are using, is quite inexpensive and thus has a lot of noise and uncertainties. The
GPS module will only give a position estimate when it has enough satellites locks,
and the height estimate can often be unreliable. The ultrasonic sensor will give
accurate height estimates, but only when close to the ground.

We want to obtain a smooth and accurate position estimate, using any com-
bination of the available sensors.

7.3 Design of Solution

7.3.1 Ultrasonic Sensor Height Estimate

The HC-SR04 is a simple ultrasonic sensor that can be used to measure distance
by sending out a sound wave and detecting the return of said sound wave. An
illustration of how this works can be seen in Figure 7.2. The time it takes for
the sound to return, can then be used together with the knowledge of sound
speed in air, to estimate the distance in the direction the sensor is pointing. By

54

assuming that the air temperature is around 15 degrees, the speed of sound can
be approximated to 340 m/s. A distance estimate can then be found as

dus =
tend − tstart

2
340m/s (7.3)

where tstart is the time when a sound wave is sent out, and tend is the time when
the return of the sound wave is detected. dus is the distance from the sensor to
the closest object within the sensors measuring angle. The concept is illustrated
in Figure 7.2. As the illustration shows, the distance measurement should equal
the height above the ground, and thus should not need to be tilt compensated.
To remove any unwanted high frequency noise, the measurement can be filtered
using the low-pass filter Equation 4.15.

Figure 7.2: Ultrasonic Sensor Concept

7.3.2 GPS Position Estimate

The GPS module provides directly an estimate of the position in Geodetic coor-
dinates. In Section 3.1.5 we find the transformation between Geodetic and NED
as

p̂n = Rn
e (l, µ)(p̂e − peref) (7.4)

where pe is the position estimate in ECEF coordinates and peref is the ECEF
coordinates of the NED origin. The Geodetic to ECEF transformation is given

55

by

p̂e =

(N + h) cos(µ) cos(l)
(N + h) cos(µ) sin(l)

(
r2p
r2e
N + h) sin(µ)

 (7.5)

as described in Section 3.1.5.

7.3.3 Kalman Position Estimate

Simply using the GPS measurement found through Equation 7.4 to update the
position of the quadcopter, will lead to large ”jumps” in position, since the mea-
surement is noisy and has a relatively slow update frequency of 5 Hz. This is not
ideal when a position controller or a path following controller is active, as this
can lead to undesirable movement. To reduce the magnitude of these jumps, and
smooth out the position estimate, the Kalman filter, as described in Section 4.1.4
and 4.3.4, can be used. Combining the accelerometer force measurements, the
ultrasonic sensor height estimate and the GPS position estimate, should result
in better results.

The Kalman filter requires the system propagation functions and the resulting
jacobian matrices. From Newton’s second law, we have

ṗn = vn (7.6)

v̇n =
1

m
fn (7.7)

where we can use the accelerometer to approximate fn as

fn ≈ Rn
b (Θ)abacc + gn + Rn

b (Θ)(bacc + wacc) (7.8)

where bacc and wacc is the bias and zero-mean noise of the accelerometer respec-
tively. Since a small bias in the accelerometer measurement will inevitably be
integrated and cause large errors in the position estimate, a system model which
includes the bias can be used. Defining x = [pn, vn, bacc]

T yields

ẋ = Ax + B(Rn
b (Θ)(abacc + bacc) + gn) (7.9)[

ygps
yus

]
= Cx (7.10)

56

where

A =

0 1 0
0 0 0
0 0 0

 (7.11)

B =

1 0 0
0 1

m 0
0 0 1

 (7.12)

C =

[
1 0 0
1 0 0

]
(7.13)

Even though the system equations are linear with respect to the system states,
the Extended Kalman Filter, as described in sections 4.1.4 and 4.3.4, can be used
to estimate the position, but with the A and C matrices defined as above.

7.4 Observations and Results

Figure 7.3 shows a plot of the ultrasonic distance estimate obtained while varying
the pitch angle with the quadcopter placed between two tables such that the roll
angle remained constant. During the experiment, the height above the ground
remained constant.

A data series was taken from the GPS while walking back and forth in a
straight line with the quadcopter. The geodetic coordinates was transformed
into NED coordinates using Equation 7.4. A plot of the North coordinate vs
time and the East coordinate vs time can be seen in Figure 7.4. Figure 7.5
shows a plot of the North-East GPS estimated position vs the actual position;
independent of time.

57

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1
ultrasonic distance estimate

time(s)

di
st

an
ce

(m
)

0 5 10 15 20 25 30 35 40 45 50
−20

−10

0

10

20

30

40
pitch angle

time(s)

an
gl

e(
de

gr
ee

s)

Figure 7.3: A comparison of the distance measurement vs the tilt compensated
distance estimate

58

150 160 170 180 190 200 210 220 230 240
−1

0

1

2

3

4
GPS North position estimate

time(s)

di
st

an
ce

(m
)

150 160 170 180 190 200 210 220 230 240
−5

0

5

10

15
GPS East position estimate

time(s)

di
st

an
ce

(m
)

Figure 7.4: GPS North and East estimates vs time

59

−5 0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
GPS North vs East estimate

N
or

th
(m

)

East(m)

GPS estimate
Actual position

Figure 7.5: GPS estimated North-East position vs actual position

7.5 Discussion and Conclusion

As seen from the figure, the assumption that the distance measurement equals
the height above the ground is valid for angles less then approximately 25◦. From
the specifications of the HC-SR04 sensor, the sensor can measure distances up to
120 cm. Hence, when the quadcopter is below 100 cm and the angle is less then
25◦, the height estimate from the ultrasonic sensor should be used.

From Figure 7.5 we see that the position estimate obtained from GPS are
noisy and non-smooth. If these estimates are used directly with a position control
scheme, this would lead to the quadcopter ”hopping” around the desired position.

7.6 Recommendations and Future Work

When flying indoors where the GPS signal is weak or non-existent, we recommend
not trying to fly above 100 cm. To improve the height estimate, a differential
pressure sensor can be used in addition to the ultrasonic sensor. This will also

60

allow flying above 100 cm without a GPS satellite lock.

61

62

8 Control of Attitude

8.1 Theory

The attitude describes the orientation of the quadcopter. In order to achieve a
stable flight, the roll and pitch angles needs to be controlled. Several different
control methods can be used to achieve stability, and in this chapter we will
explore the various alternatives. The attitude control problem is essentially the
same objective as the first quadcopters were trying to achieve. The first ever
successful attitude and altitude controlled flight with a quadcopter were achieved
by a French engineer, Etienne Edmond Oemiche in 1922[31].

8.1.1 The Linear Quadratic Regulator

Given the continuous linear system

ẋ = Ax + Bu (8.1)

ẏ = Cx + Du (8.2)

A LQR solves the optimal control problem of minimizing the cost function

J =

∫ ∞
0

(xTQlqrx + uTRlqru)dt (8.3)

where Qlqr and Rlqr are semi-positive definite weighting matrices, which enables
us to define the relationship between the input and the response time. The
optimal gain matrix Klqr is given by

K = R−1BTP (8.4)

where P is found by solving the continuous algebraic Riccati equation

ATP + PA−PBR−1BTP +Q = 0 (8.5)

The optimal control gain is found as u = −Klqre, where e = x−xref is the error
between the process variables and the reference signal. The closed loop dynamics
using the LQR feedback is given by

ė = (A−BKlqr)e (8.6)

The linear quadratic regulator provides by definition an optimal state-feedback
that minimizes the cost function (Equation 8.3), with that in mind the LQR is
a clear candidate for implementing attitude control for the quadcopter. Optimal
control refers to a class of methods that can be used to incorporate a control
design which results in best possible behaviour with respect to the criterias for
the system[31].

63

8.1.2 The Proportional-Integral-Derivative Controller

The Proportional-Integral-Derivative (PID) controller gives the simplest and yet
the most efficient solution to various real-world problems. Both the transient
and steady-state responses are taken care of with it’s three-term functionality
(proportional, integral and derivative). Since its invention the popularity of the
PID controller has grown tremendously due to the advances in digital technol-
ogy. The various automatic control systems offers a wide spectrum of choices for
control schemes, even though more than 90% of industrial controllers are still im-
plemented based around the PID algorithm [32], particularly at the lowest levels,
as no other controllers match the simplicity, clear functionality, applicability, and
ease of use offered by the PID controller. The PID control algorithm is given by

u(t) = K
(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Tdė(t)
)

(8.7)

where e(t) = (ysp − y) is the error between a measured process variable and
a reference signal, often called a set point, Ti is the integral time and Td is the
derivative time. If a process variable cannot be measured it is common to design
an observer that estimates the states by observing the measurable outputs.

Zieger-Nichols Method

In the 1940’s, John G Ziegler and Nathaniel B. Nichols formulated two empirical
methods for obtaining controller parameters. The Ziegler-Nichols closed loop
tuning method is a heuristic method. Its performed by adjusting the integral
and derivative gains to zero, the proportional gain Kp is then increased until it
reaches the ultimate gain Ku at which the output of the control loop oscillates
with a constant amplitude. Ku and the oscillation period Tu is used to set the
Proportional, integral and derivative gains depending on the type of controller
used [24];

Zieger-Nichols method
Control type Kp Ki Kd

P 0.5Ku - -
PI 0.45Ku 1.2Kp/Tu -
PD 0.8Ku - KpTu/8
Classic PID 0.6Ku 2Kp/Tu KpTu/8
Pessen Integral Rule 0.7Ku 2.5Kp/Tu KpTu/20
Some overshoot 0.33Ku 2Kp/Tu KpTu/3
No overshoot 0.2Ku 2Kp/Tu KpTu/3

Table 8.1: Zieger-Nichols method

64

8.1.3 Nonlinear Control Theory

Nonlinear control theory is the area of control theory which deals with systems
that are nonlinear, time-variant, or both[23]. In our case we know (based on
the model derived during our fall project[31]) that the system does not explicitly
depend on time, which means that our system is autonomous. There are some
key points for why nonlinear control theory is being used[30];

• Few physical systems are truly linear

• The most common method to analyze and design controllers for systems is
to start by linearizing around some point, which yields a linear model, and
then use linear control techniques. In this process important information
about the system can be lost.

• There are systems for which the nonlinearities are important and cannot be
ignored, for these systems, nonlinear analysis and design techniques exist
and can be used.

Nonlinearity arise naturally in numerous engineering and natural systems,
including mechanical and biological systems, aerospace and automotive control,
industrial process control and many others[33].

Numerous methods and approaches exist for the analysis and design of non-
linear control systems. Most of the theory and practice focus on feedback control;
in feedback control a reference input is compared to the feedback signal, and a
control input is produced. Nonlinear models may be classified into smooth and
non-smooth nonlinear models. Non-smooth models are often associated with par-
asitic effects such as dry friction and actuator saturation, and sometimes these
effects become significant, and may enter as a constraint in the design, or even
require specific compensation techniques.

Alongside general tools and methods from system theory, such as equilibrium
points and Lyapunov stability, a number of results and analysis methods apply
specifically to feedback systems[33];

• Limit cycles (or sustained oscillations) are common in nonlinear feedback
systems, and are usually not desired in control systems. The describing
function method investigate the possibility of oscillations by approximating
the response of nonlinear elements to sinusoidal inputs of given amplitude
and frequency.

• Small gain theorem allows us to establish the input-output stability of a
feedback system from properties found in its subsystems.

65

Control system design in general aims to satisfy certain performance objec-
tives, such as stability, accurate input tracking, disturbance rejection, and ro-
bustness. Nonlinear systems are diverse by nature and necessarily they call for a
variety of different design approaches.

One design viewpoint is to view the controlled system as an approximately
linear one, or linearize the system by appropriate transformation, to which well-
established linear control techniques may be applied, e.g. PID control, local
linearization and feedback linearization.

Another design method is to approach the design problem directly using non-
linear tools, notably Lyapnov stability and Lyapunov functions, which are exam-
ples of robust nonlinear controls[33].

In lyapunov-based design, a stable system is synthesized by first choosing a
candidate Lyapunov function V, and then selecting a state-feedback control law
that renders the derivate of V negative. The Lyapunov redesign method provides
the system with robustness to (bounded) uncertainly in the system dynamics. It
starts with a stabilizing control law and Lyapunov function for the nominal sys-
tem, and adds certain (non-smooth) terms to the control that ensure stability in
the face of all admissible uncertainties[33]. While Lyapunov redesign is restricted
systems that satisfy a matching condition so that the uncertainty terms enter
the state equations at the same point as the control input, the basic approach
has been extended to more general situations using recursive or backstepping
methods.

Sliding mode control is another robust design approach, also called variable
structure control. An appropriate manifold in the state space is fist located on
which the system dynamics takes a simple and stable form. This manifold is
called the sliding surface or the switching surface. The control law is designed to
force trajectories to reach that manifold in finite time, and stay there thereafter.
As the basic control law is discontinuous by design around the switching surface,
unwanted chattering around that may result and often require some smoothing
of the control law[33].

8.1.4 Alternative Controllers

There are many other techniques from control engineering that are applicable
to the design of nonlinear systems. They are briefly described below, but not
considered suitable for the design of an attitude controller[33].

• Optimal Control: The control objective is to minimize a pre-determined
cost function. The basic solution tools are dynamic programming and vari-
ational methods. The available solutions for nonlinear problems are mostly
numeric.

66

• Model predictive control: An approximation approach to optimal control,
where the control objective is optimized on-line for a finite time horizon.
Due to computational feasibility this method has recently found wide ap-
plicability, mainly in industrial process control.

• Adaptive control: A general approach to handle uncertainty and possible
time variation of the controlled system model. Here the controller param-
eters are tuned on-line as part of the controller operation, using various
estimation and learning techniques.

• Neural network control: A particular class of adaptive control systems,
where the controller have the form of an artificial neural network.

• Fuzzy logic control: Here the controller implements a set of logical (or
discrete) rules for synthesizing the control signal based on the observed
outputs. Defuzzification and fuzzification procedures are used to obtain a
smooth output law from discrete rules.

• Hybrid dynamic controller: A controller that exhibits both continuous and
discrete dynamic behaviour - a system that can both flow and jump. In
general, the state of a hybrid system is defined by the values of the con-
tinuous variables and a discrete control mode. The state changes either
continuously, according to a flow condition, or discretely according to a
control graph. Continuous flow is permitted as long as so-called invariants
hold, while discrete transitions can occur as soon as given jump conditions
are satisfied[22].

8.2 Problem Description

The attitude controller seeks to control the roll and pitch angles and to stabilize
them at zero degrees.

8.3 Design of Solution

The attitude control problem is an unstable system with highly nonlinear dy-
namics. This is a system which belongs to the class of underactuated mechanical
systems, having fewer control inputs than degrees of freedom. This renders the
control task challenging when it comes to design, testing, evaluating and compar-
ing the different classical and contemporary control techniques. We have chosen
to look more closely at a few of them.

In general, the control problem consists of obtaining dynamic models of the
system, and using these models to determine control laws or control strategies
to achieve the desired system response and performance. The complexity of

67

the control algorithms and system model, as well as our objective to guarantee
the stability and robustness is a challenging task in real situations for real-time
systems.

8.3.1 The Linear Quadratic Regulator

The attitude control problem is a Multiple-Input-Multiple-Output (MIMO) sys-
tem. When you wish to tune an LQR for a MIMO system you can change
individual elements of the Qlqr matrix. By simply increasing or decreasing the
elements along the diagonal, we can change how aggressive the controller should
be with respect to the separate process variables.

Implementing LQR as our regulator for attitude control poses some challenges.
LQR assumes that all the states of the system are measurable, if not an observer
that estimates the states by observing the measurable output is required. Fur-
thermore the LQR requires an analytical model of the system, and in our case it
is a nonlinear model, which leads the design of LQR and observer to require a
linearized model as well as linear state space equations.

In Dynamical systems, linearization is useful for assessing the local stability
of an equilibrium point in a system with nonlinear differential equations. Lin-
earization is an effective method for approximating the output of a function near
an equilibrium point, and are therefore very useful in linear control theory. Lin-
ear control algorithms are proven to be easier to understand and often easier to
implement then nonlinear control algorithms, since many nonlinearities can be
ignored or simplified. Various linearization techniques were explored during our
fall project[31], as well as the deriving of the following linearized equations.

Linearized Kinematic Equations

From our fall project[31], we see that the system Kinematic model were found to
be [

Ṗn
b/n

Θ̇nb

]
=

[
Rn
b (Θnb) 03x3

03x3 T(Θnb)

] [
vbb/n
ωbb/n

]
(8.8)

68

After linearization we got the following approximated matrices

Rn
b (Θnb ≈

 1 −ψ θ
ψ 1 −φ
−θ φ 1

 (8.9)

T(Θ) ≈

1 0 −θ
0 1 −φ
0 φ 1

 (8.10)

Ṗn
b/n ≈

 1 −ψ θ
ψ 1 −φ
−θ ψ 1

uv
w

 =

 u− ψv + θw
ψu+ v − φw
−θu+ φv + w

 ≈ vbb/n (8.11)

Θ̇nb ≈

1 0 −θ
0 1 −φ
0 φ 1

pq
r

 =

p− θrq − φr
φq + r

 ≈ ωbb/n (8.12)

Linearized Rigid-body Kinetics

From our fall project[31], we see that the system kinetics model were found to be[
mI3x3 03x3

03x3 Ig

]
︸ ︷︷ ︸

MCG
RB

[
v̇bg/n
ω̇bb/n

]
+

[
mS(ωbb/n) 03x3

03x3 −S(Igω
b
b/n)

]
︸ ︷︷ ︸

CCGRB

[
vbg/n
ωbb/n

]
=

[
fbg
mb
g

]
(8.13)

The kinetic equations can be approximated as

v̇bg/n ≈
1

m
f bg (8.14)

ω̇bb/n ≈ I−1
g mb

g (8.15)

f bg = Fgravity + Fmotor ≈

−θmgφmg
mg

+ Fmotor (8.16)

Linearized State Space Model

Merging the results from the linearization of the kinetic and kinematic equations
and defining x = ((pnb/n)T , (Θnb)

T , (vbg/n)T , (ωbb/n)T)T yields the following linear

state space model[31] :

ẋ = Ax + Bu (8.17)

69

where

A =


03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

Υ 03×3 03×3 03×3

03×3 03×3 03×3 03×3

 (8.18)

Υ =

0 −g 0
g 0 0
0 0 0

 (8.19)

B =


08×1 08×1 08×1 08×1

K1 K1 K1 K1

0 −K2 0 K2

K2 0 −K2 0
−K3 K3 −K3 K3

 (8.20)

Our LQR Attitude Controller

We define x = (φ, θ, ψ, p, q, r) and assume full-state feedback, furthermore we
have the following linearized subsystem as derived in our fall project[31]

ẋ = Ax + Bu (8.21)

where

A =

[
03x3 I3x3

03x3 03x3

]
(8.22)

B =


03x1 03x1 03x1 03x1

0 −K2 0 K2

K2 0 −K2 0
−K3 K3 −K3 K3

 (8.23)

Following the Bryson’s weighting rule, our initial design was to choose Qlqr

70

and Rlqr as

Qlqr =


1

x2
1,max

0 . . . 0

0
. . .

...
...

. . .

0 . . . 1
x2
6,max

 (8.24)

Rlqr =


1

u2
1,max

0 . . . 0

0
. . .

...
...

. . .

0 . . . 1
u2
4,max

 (8.25)

where xmax and umax are the maximum allowed or desired variations in states
and inputs respectively. After some tuning in Matlab simulations, as derived in
our fall project[31], we started with;

Qlqr = diag([800, 800, 10, 10, 10, 5]) (8.26)

Rlqr = diag([0.01, 0.01, 0.01, 0.01]) (8.27)

8.3.2 The Proportional-Integral-Derivative Controller

Assuming that the quadcopter is fairly vibration free, its possible to make the
quadcopter fly relatively stable using only the proportional gain without having
any impressive behavior. If the proportional gain is too low the quadcopter will
behave sluggish and use a long time to correct any errors. If the proportional
gain coefficient is too high we will get overcorrections from errors (overshoot),
and get high frequent oscillations and an unstable quadcopter.

The integral gain coefficient can increase the precision of the angular position,
and hence remove steady state errors. The integral gain coefficient is especially
useful with irregular wind, and ground effect (turbulence generated by the mo-
tors). If the integral gain value gets too high the quadcopter will begin to show
signs of slow reaction and a decreased effect of the proportional gain as conse-
quence, it will also start to oscillate with a low frequency.

The derivative gain coefficient is useful in order to prevent overshoot and will
be of greater importance in the case of aerobatic flights. It is however possible
to ignore the derivative gain value completely and the quadcopter will be able to
fly. The derivative gain will change the force applied to correct a position error,
when it sees a decrease or increase in the position error, this term will ”soften”
the movement and can help reduce vibrations.

71

Tuning Using Zieger-Nichols Method

We used the Zieger-Nichols method in order to get a good starting point for our
tuning of the PID controller. We increased the proportional gain, and watched
the quadcopter response go from sluggish until we got oscillations and recorded
the gain value Kp to be 27, and the oscillation period Tu to be 0.45 seconds.
Tu was found by counting the number of oscillations we had during a 10 second
flight. From these values we calculated the gains using the classic PID (seen in
table 8.1), this yielded Kp = 22,Ki = 98,Kd = 1.

8.3.3 Nonlinear Controller

In the previous explored controller options the control algorithm was based on
a linearized version of the quadcopter model. The linearization will constraint
the control to be valid for certain conditions, a nonlinear controller is suitable to
overcome these challenges.

Our nonlinear algorithm is based on the backstepping method integrated with
integral and adaptation schemes. It is called the Adaptive Integral Backstepping
controller (AIBC)[26]. The recursive Lyapunov metodology in the backstepping
method will ensure the system stability; the integral part will increase the system
robustness against both model uncertainties as well as disturbances, and the
adaptation law will help estimate the modelling errors caused by assumptions in
simplifying the complexity of the quadcopter model.

This control design has been proposed since it is able to[26];

• Stabilize roll and pitch angles at zero degrees

• Ensure stability of the quadcopter using a nonlinear controller based on the
Lyapunov criterion

• Estimate the translation matrix between the Euler angle rates and the
inertial orientation angle rates using the adaptation technique

First, let us consider a second order system

ÿ = a+ bu+A (8.28)

where y is the state variable, a represents the body gyroscopic effect, b is constant
and represents the inertia, u is the control input, and A is an estimator for model
errors as well as variations. We start out control design by defining the position
tracking error and its derivative:

e1 = yd − yx (8.29)

de1

dt
= ẏd − ẏx (8.30)

72

This definition specifies our control objective, where the recursive approach will
drive the tracking error to zero. Lets consider the Lyapunov function V, which
is positive definite around the desired position:

V =
1

2
e2

1 (8.31)

V̇ = e1(ẏd − ẏx) (8.32)

If the velocity ẏx was our control input, we could easily choose ẏx such that we
had exponential convergence for the system, an example is ẏx = ẏd + c1e1 where
c1 is a positive number that determines the convergence speed for the error[26].
Based on this we can see that the derivative of the Lyapunov function will be
semi-negative definite and consequently the error will converge exponentially to
zero.

V̇ = −c1e2
1 ≤ 0 (8.33)

However, since the velocity ẏx is only a system variable and not a control input,
we can’t specify its value as easily as we did in equation 8.32. There is however,
possible to choose the desired behavior for ẏx and consider it as our virtual control
input. When performing backstepping design, the desirable dynamic behavior
is called the stabilizing function[26]. Furthermore, the integral action will be
included by choosing the virtual input as follows:

ẏxd = c1e1 + ẏd + λ1χ1 (8.34)

χ1 =

∫ t

0

e1(τ)dτ (8.35)

Where ẏxd is the desired virtual input. We can ensure the convergence of the
tracking error to steady state since we have included the integral action in the
backstepping design, despite the presence of disturbances and model uncertain-
ties.

Since ẏx is not our control input, a dynamic error exists between it and its
desired behavior ẏxd [26]. We need to compensate this dynamic error by defining
the velocity tracking error and its derivative as follows:

e2 = ẏxd − ẏx (8.36)

de2

dt
= c1(ẏd − ẏx) + ÿd + λ1e1 − ÿx (8.37)

73

We can rewrite the derivative of the position error and get:

de1

dt
= −c1e1 − λ1χ1 + e2 (8.38)

⇓
de2

dt
= c1(ẏd − ẏx) + ÿd + λ1e1 − a− bu−A (8.39)

By adding the integral action, the augmented Lyapunov function will become
[26]:

V =
λ2

2
χ2

1 +
1

2
e2

1 +
1

2
e2

2 (8.40)

We want to design an control input such that V̇ ≤ 0

u =
1

b

(
(1− c21 + λ1)e1 + (c1 + c2)e2 − c1λ1χ1 + ÿd − a−A

)
(8.41)

⇓
V̇ = −c1e2

1 − c1e2
2 ≤ 0 (8.42)

A problem with this control input is that we do not know the real value of A,
we need to replace it with the estimated value Â and the adaptation law will be
used:

u =
1

b

(
(1− c21 + λ1)e1 + (c1 + c2)e2 − c1λ1χ1 + ÿd − a− Â

)
(8.43)

In order to complete the design we need to derive the update law for our estimated
parameter Â. Let us define a parameter estimation error signal to be used in
equation 8.43 as:

Ã = Â−A (8.44)

If we substitute 8.44 into 8.39 then the derivative of the velocity tracking error is

de2

dt
= −c2e2 − e1 + Ã (8.45)

In order to enhance the estimated parameter error we need to use the Lyapunov
function a second time[26].

v =
λ1

w
χ2

1 +
1

2
e2

1 +
1

2
e2

2 +
1

2γ
Ã2 (8.46)

V̇ = λ1χ1χ
T
1 + e1ė1 + e2 + ė2 +

Ã

γ

dÃ

dt
(8.47)

V̇ = −c1e2
1 − c2e2

2 + Ã
(
e2 +

1

γ

dÃ

dt

)
(8.48)

74

Where γ is a positive design constant that determines the convergence speed of
the estimate. In order to render the non-positivity of the Lyapunov derivative
in the equation mentioned above, we need to choose the adaptation law for the
estimated parameter Â as:

dÃ

dt
= −γe2 (8.49)

Ã = −γχ2 (8.50)

χ2 =

∫ t

0

e2(τ)dτ (8.51)

⇓
V̇ = −c1e2

1 − c2e2
2 ≤ 0 (8.52)

From this we can by using the adaptation law and the integral action derive the
control input as following[26]:

u =
1

b

(
(1− c21 + λ1)e1 + (c1 + c2)e2 − c1λ1χ1 + γχ2 + ÿd − a

)
(8.53)

To get the system equations on the same form as the second order system Equa-
tion 8.28, we simply apply Newton’s second law to obtain

p̈n = v̇n (8.54)

v̇n =
fn

m
= R(Ω)Fm + g (8.55)

where

Fm =

 0
0∑4

i=1 Fm,i

 (8.56)

Furthermore, by defining the inputs u1 =
∑4
i=1 Fm,i, u2 = τψ, u3 = τθ, u4 = τψ,

this can be inserted into Equation 8.53.

75

8.4 Observations and Results

8.4.1 The Linear Quadratic Regulator

10 15 20 25 30 35 40
−20

0

20

40
Pitch Angle

time(s)

an
gl

e(
de

gr
ee

s)

10 15 20 25 30 35 40
−100

−50

0

50

100
Motor Input

time(s)

In
pu

t(
P

W
M

)

Figure 8.1: Angle and motor input using LQR

76

8.4.2 The Proportional-Integral-Derivative Controller

5 10 15 20 25 30 35 40
−30

−20

−10

0

10

20

30
Pitch Angle

time(s)

an
gl

e(
de

gr
ee

s)

5 10 15 20 25 30 35 40
−60

−40

−20

0

20

40

60
Motor Input

time(s)

In
pu

t(
P

W
M

)

Figure 8.2: Angle and motor input using PID

8.5 Discussion and Conclusion

Throughout this chapter we have explored and discussed mainly three differ-
ent solutions for the control problem: The Linear Quadratic Regulator, the
Proportional-Integral-Derivative Controller and a Nonlinear Controller. The
LQR and PID was implemented and tested, and the test results can be seen
in section 8.4. We choose not to implement the nonlinear controller because of
its complicated nature and the time it would take to implement.

77

8.5.1 The Linear Quadratic Regulator

After the Linear Quadratic Regulator were implemented, tuned and tested we
got the results as can be seen in figure 8.1. We tested the LQR using prototype
1.1 (see section 11.3), where we mounted two propellers on one of the diagonals,
and placed the quadcopter with the other diagonal placed on two tables at equal
height. Since we have brushed down two of the sides from a square into a cylinder,
the quadcopter controllers can be tested fairly realistically, while we can use a
serial cable to acquire the data.

Figure 8.1 shows the angle that the controller was supposed to stabilize at 0
degrees, and the input generated on one of the motors based on the angle and
angle rate, the other motor will have the same input but with the opposite sign.
During this test we occasionally pulled on one of the sides of the quadcopter, in
order to test the response with some interference.

The average angle is approximately 7 degrees, and thus this system failed to
stabilize the quadcopter at 0 degrees. This is a result from a small differentiation
in the weight, that the LQR can not overcome since there is no integral part.
The quadcopter shows stability, and counteracts our disturbance with ease.

If we used this controller on the final prototype (section 11.4) we would have
a stable quadcopter, but it would drift massively in position. It is in theory
possible to control this using position estimation with GPS, but we believe that
the quadcopter would drift before returning to the original position and then drift
away again. This is not a desirable behavior, and therefore this controller is not
suitable as out attitude regulation.

After tuning we ended up with the following Qlqr and Rlqr matrices;

Qlqr = diag([100, 100, 10, 1, 1, 1]) (8.57)

Rlqr = diag([0.01, 0.01, 0.01, 0.01]) (8.58)

8.5.2 The Proportional-Integral-Derivative Controller

After the Proportional-Integral-Derivative controller was implemented, tuned and
tested we got the results as can be seen in figure 8.2. We tested the controller
in the same fashion as the LQR, using prototype 1.1 (see section 11.3), with two
motors attached with propellers, while the quadcopter itself were resting across
two tables.

Figure 8.2 shows the angle that the PID controller was supposed to stabilize
at 0 degrees, and the input generated on one of the motors, based on the angle,
angle rate and the integral of the angle. Furthermore we included the same
disturbance as with the LQR, where we occasionally pulled with force on one of
the sides.

78

From the results we can see that the integral part of the PID controller helps
stabilize the angle around 0 degrees after 15 seconds, and manages to hold the
stabilized area at 0 degrees even with the disturbance. The response that the
PID controller performed during our disturbance was significantly better than
as with the LQR. There is practically no overshoot when it recovers from angles
above ±20 degrees and it is stable once again around 0 degrees after just one
second.

This control system perform better in every way compared to the LQR, and
thus we choose to use the PID controller on prototype 2. Our tests with four
propellers and free flight were successful, and the attitude have been stable with-
out exception for more than 5 hours of flight time. However, we were unable
to provide any proper plots from this, due to the fact that the radio link have
limited amount of messages per second (see section 12.4.3), and there are no un-
complicated way to use a serial cable during flight. A possible solution would be
to use a bluetooth antenna, which have a much higher bandwidth than the radio
in order to provide the data required for the plots.

The tuning process was a time consuming and thorough process, but it re-
sulted in a satisfactory controller. The performance of the attitude controller
was achieved using the control parameters listed in table 8.2. These values are
quite different than the suggestions using Zieger-Nichols method, and is another
example that there is no certain method for calculating control gains.

Control gain Zieger-Nichols value Final value
P 22 70
I 98 10
D 1 15

Table 8.2: PID control gains

8.6 Recommendation and Future Work

In order to ensure proper attitude control it is necessary for the IMU to be
calibrated and placed in the center of the quadcopter. If the accelerometer is
placed somewhere else than the center, we need to calculate the acceleration and
angle velocity using a rotation matrix, which will increase the iteration time and
could thus cause poor performance in addition to increased complexity. The
accelerometer also need to be calibrated for each time the IMU is moved, due
to the difficuly of placing the accelerometer perfectly aligned with the axes of
the quadcopter, and even an error of one degree will cause the quadcopter to
drift in position. This can also be compensated in flight time using the Windows
application, and would be the first place to look if the quadcopter drift.

79

In the future we would explore the nonlinear controller, even tough it is highly
complex and complicated to implement. Simulation results provided in other
articles [26] indicates that a proper nonlinear controller have a better performance
for the attitude control of a quadcopter, than a tuned PID or LQR. We would
estimate that the cycle time would be sligtly higher for the nonlinear controller
than for the PID and LQR, which could potentially decrease the efficiency of the
nonlinear controller.

80

9 Control of Altitude

9.1 Theory

The design of an altitude controller was simplified when we separated the attitude
and altitude control problems into two separate controller designs. The altitude
control problem is unstable; with non-linear dynamics, the force provided by each
of the propellers does not share linear dynamics with the thrust, and in addition
the force generated depends on the altitude above ground, known as the ground
effect.

In order to measure the altitude, we use a range sensor for low heights and
GPS position data for altitudes above a meter. The range sensor provides reliable
data for ranges up to 1.2 meters, however, any roll and pitch motion performed
by the quadcopter will increase the distance the sensor measures towards the
ground, and will hence reduce the working area for the range sensor. The GPS
provides low precision altitude data, which can be in the range of ± 2 meters,
however, our extended Kalman filter will increase the precision substantially.

9.2 Problem Description

Design and implement an altitude controller, able of stabilizing the altitude to a
desired height above ground.

9.3 Design of Solution

Lets look at the dynamics of the system. By defining pn = [N,E,D] and applying
Newton’s second law we get the system model

p̈n =
1

m
f b (9.1)

where

f b = g −Rn
b (Ω)Fm (9.2)

=

0
0
g

−Rn
b (Ω)

 0
0∑4

i=1 Fm,i

 (9.3)

We can simplify Fm by ignoring the difference in motor forces created by the
attitude controller, such that

∑4
i=1 Fm,i = 4Fm,avg, where Fm,avg represents the

average input force to each motor. In the design of an altitude controller this is
also a quite realistic simplification, since an increase in motor force due to the

81

attitude controller on one motor will result in an equal decrease in the opposite
motor.

p̈n =
1

m

−(sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ))4Fm,avg
(cos(ψ) sin(φ)− sin(θ) sin(ψ) cos(φ))4Fm,avg

g − cos(θ) cos(φ)4Fm,avg

 (9.4)

From this we can extract that the acceleration along the z-axis can be de-

scribed as Z̈ =
g−cos(θ) cos(φ)4Fm,avg

m . The altitude controller will not consider
acceleration in the X and Y direction. Using this we can design a controller
which will control Fm,avg, and in turn be able to control the altitude of the
quadcopter. A control scheme for this system can be seen in figure 9.1.

Figure 9.1: Control system design for the altitude

This is a non-linear system, where any roll and pitch motion will reduce the
thrust in the Down(NED) direction. A simple solution is to define

Fm,avg = m
g + Fp

4
(9.5)

where

Fp = kp,zZ̃ + ki,z

∫
Z̃ + kd,z

˙̃Z (9.6)

is a PID controller that stabilizes the altitude at Z̃ = Zd − Z, where Zd is
the desired height. It is difficult or impossible to use tuning methods like Zieger-
Nichols method for the altitude PID controller, since a practical experiment where
we increase the proportional gain until we have oscillations can be dangerous. The
PID controller will therefore be tuned slowly in flight. The controller is explained
graphically for this system in figure 9.2

82

Figure 9.2: PID control system design for the altitude

83

9.4 Observation and Results

5 10 15 20 25 30 35 40 45 50 55
0

50

100

150

200

250
Height estimate

Time (s)

H
ei

gh
t (

cm
)

Hight estimate
Desired height

5 10 15 20 25 30 35 40 45 50 55
1450

1500

1550

1600

1650
Motor input

Time (s)

P
W

M

Figure 9.3: Altitude controller

84

9.5 Discussion and Conclusion

The objective of the altitude controller is to design and implement a controller
with stable behavior. In figure 9.3 we see a plot of the estimated height and
corresponding motor input generated by the altitude PID controller during a 50
second flight.

The altitude control problem is a highly nonlinear control problem, with chal-
lenging behavior. Wind, the surrounding environment and especially the quad-
copter itself creates turbulence in the air, which will yield different thrust gener-
ated by the propellers even with the same control input. In addition, for small
heights (approximately less then one meter), the thrust generated depends on
the distance to the ground, where we have greater force and more disturbances
the closer we are to the ground.

The altitude controller managed to hold the estimated height within a margin
of ±25 cm around the targeted height of 60 cm. Considering the nonlinear terms
of the system as well as the unpredictable behavior of the airflow, we consider
this altitude controller to be satisfactory. The quadcopter will be able to keep its
altitude in a area less then ±25 cm of its targeted height, and the drift within
this area is slow.

In our design of the altitude controller, we assumed that the roll and pitch
angles are small. A possible improvement to the controller can be made by
considering the fact that the actual force applied in the Down(NED) direction is
given by

Fdown =
1

cos(φ) cos(θ)
Fm,avg (9.7)

9.6 Recommendation and Future Work

In order to increase the performance of the quadcopter we recommend additional
range sensors. The range sensors have various working areas, and by including
several range sensors with different working areas, we can ensure proper height
estimations for a broader span of altitudes.

A potential improvement to the controller itself would be to consider the
equations for the thrust generated by the propellers, as can be seen in section
3.2.2. The thrust generated by each propeller are quadratic to the PWM input,
and by including this in the model we may be able to produce better motor
inputs, and gain a more stable altitude controller.

85

86

10 Control of Motion

10.1 Theory

Controlling the quadcopter position along the three axes in the NED coordinate
system is no easy feat. The attitude and the position of the quadcopter must be
estimated within reasonable margins, and the attitude must be controlled. Given
a stable attitude controller, the quadcopter can then translate along the x- and
y- axes by changing the desired attitude angles.

10.1.1 Dynamic Positioning

Dynamic positioning(DP) is a term most widely used together with vessel control
for the oil industry as a computer controlled system that automatically maintains
the vessel’s position and heading even in heavy waves and wind. By combining
sensor data, position and attitude can be estimated and used together with a
mathematical model of the vessel to determine and apply appropriate thrust in
order to maintain the desired position. DP may either be absolute in that the
position is locked to a fixed point over the ground, or relative to a moving object.

10.1.2 Waypoints, Paths And Trajectories

The most common way of specifying a desired route of an autonomous quad-
copter, is done using Cartesian coordinates (xk, yk, zk) for k=1,...,n. Addition-
ally, other way-point properties such as desired heading can be specified as (ψk)
for k=1,...,n. This means that the quadcopter should pass through way-point
(xi, yi, zi) with heading (ψi). In practice, to obtain smoother transitions between
way-points, a path can be generated. Path-following is independent of time,
hence no restrictions are placed on the temporal propagation along the path. If
time execution is critical, a desired trajectory (x(t), y(t), z(t)) of desired position
in time can be generated. This trajectory can be created using reference models
generated by low-pass filters, optimization methods or by simply simulating the
quadcopter motion using an adequate model.

The transformation of such way-points to a feasible path or trajectory, is
often a non-linear optimization problem for under-actuated crafts, but since the
quadcopter can move freely in along all three axes with no limitations other than
that of maximum velocity (and potential objects in the way), this can be done
quite easily.

10.2 Problem Description

The quadcopter is under-actuated since it can not exert force along its own x- or
y-axis. The position can be changed using different strategies by controlling the

87

attitude and the motor force along the body z-axis. In this section

• Guidance systems for calculating the changes in velocity required to follow
paths and trajectories will be explored and discussed.

• To control the speed of the quadcopter along the desired velocity given by
the guidance systems, a speed controller is devised.

In this section, position and attitude is assumed known.

10.3 Design of Solution

10.3.1 Guidance Systems, Trajectory and Path Generation

Depending on the objective, several different guidance systems may apply to the
situation.

Line of Sight

If the objective is to follow a line between a reference point and a target, Line
of Sight (LOS) guidance can be applied. A 2D illustration of the LOS guidance
principle using lookahead-based steering is shown in Figure 10.1, where e is the
distance from the quadcopter to the current line, s is the distance moved along
the current line and α is the angle between p̃nk = pnk+1−pnk and p̃nk,int = pn−pnk .
Furthermore the dot product between two Euclidean vectors are defined as

P ·Q = cos(θ)|P||Q| (10.1)

thus we find α as

α = cos−1

(
p̃nk · p̃nk,int
|p̃nk ||p̃nk,int|

)
(10.2)

Since we now know α, we can find e and s using the trigonometric relations

s = |pn| cos(α) (10.3)

e = |pn| sin(α) (10.4)

The desired course vector is then defined as

pnLOS = pnk + (s+ ∆)(pnk + p̃nk)− pn (10.5)

where ∆ is a design parameter. The desired velocity vector is defined as

vnLOS = −β pnLOS
|pnLOS |

(10.6)

88

where β is the desired speed towards the target. β can be dependent on the
distance from the target such that the desired speed goes towards zero as the
quadcopter gets closer to the target.

Figure 10.1: LOS guidance illustration in 2D

If the objective is to simply follow a target, a Pure Pursuit (PP) guidance
scheme can be applied. The principle is shown in Figure 10.2, where the quad-
copter aligns its velocity vector along the vector between the quadcopter and the
target. The desired velocity vector is chosen as

vnPP = −β p̃n

|p̃n|
(10.7)

where p̃n = pn − pnt , pn is the position of the quadcopter, pnt is the position of
the target and β is the desired speed towards the target.

89

Figure 10.2: PP guidance illustration in 2D

If the objective is to intercept a moving target with known velocity vnt , a
Constant Bearing (CB) guidance scheme can be applied. The principle is shown
in Figure 10.3, where the quadcopter aligns its velocity vector along the sum of
the PP vector obtained using the equation above and the speed of the target.
More specifically

vnCB = vnLOS + vnt (10.8)

This guidance law is commonly found in air-to-air or ground-to-air rockets.

90

Figure 10.3: CB guidance illustration in 2D

Trajectory tracking can be useful if the objective is to follow a time dependent
route or to smooth out linear reference signals. The desired position is then
defined as pnd = (x(t), y(t), z(t)). If the desired route is infeasible, a reference
model trajectory can be obtained using a low-pass filter structure

pnr
pnd

=

h1,LP

h2,LP

h3,LP

 (10.9)

where the choice of filter should reflect the system dynamics. The bandwidth
of the filters should be chosen lower than the bandwidth of the motion control
system, such that the results are feasible. The task of finding suitable filters is
non-trivial, but as a starting point the mass-damper-spring system dynamics can
be used, such that

hi,LP
ω2
ni

s2 + 2ζωnis+ ω2
ni

(10.10)

where ζi are the relative damping ratios and ωni are the natural frequencies for
the filters.

Path following can be useful for following a route independent of time. Instead
of just moving towards the next way-point, a path ensures that the quadcopter is

91

moving along predefined lines between way-points. The simplest path is the one
created by straight lines between the way-points. The guidance law most suitable
for following the path created by straight lines is the Line of Sight steering law
proposed earlier, where k is incremented when either

pnk + s(pnk+1 − pnk) ≥ |(pnk+1 − pnk)| (10.11)

or

pnk + (s+ ∆)(pnk+1 − pnk) ≥ |(pnk+1 − pnk)| (10.12)

Other paths that can also be considered, are ”straight lines and inscribed
circles” paths or paths created by interpolation methods. A straight lines and
inscribed circles path is created by defining the radius of each turn between two
way-points, as shown in Figure 10.4. Creating paths using interpolation can be
done in several ways, but the two most applicable interpolation methods one can
use are cubic spline interpolation and the piece-wise cubic Hermite interpolating
polynomial. More information about how to create these paths and how to follow
them, can be found in the Handbook of Marine Craft Hydrodynamics and Motion
Control [29].

Figure 10.4: Straight Lines and Circles path

92

10.3.2 Control of Velocity in North-East-Down Coordinate System

For the purpose of executing the guidance schemes found above, a speed controller
for the quadcopter should be designed. By defining vn = [U, V, W] and applying
Newton’s second law we get the system model

v̇n =
1

m
f b (10.13)

where

f b ≈ g −Rn
b (Ω)Fm − Fd (10.14)

=

0
0
g

−Rn
b (Ω)

 0
0∑4

i=1 Fm,i

−
 c1sign(U)(U)2

c2sign(V)(V)2

c3sign(W)(W)2

 (10.15)

where Fd represents drag force and

sign(a) =

 -1 if a < 0
0 if a = 0
1 if a > 0

(10.16)

Fm can be simplified by ignoring the difference in motor forces created by the
attitude controller, such that

∑4
i=1 Fm,i = 4Fm,avg, where Fm,avg represents the

average input force to each motor. Furthermore, defining ṽn = vn − vnd , where
vnd is the desired speed vector obtained from the guidance law, we have

˙̃vn =
1

m

−(sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ))4Fm,avg − c1sign(U)(U)2

(cos(ψ) sin(φ)− sin(θ) sin(ψ) cos(φ))4Fm,avg − c2sign(V)(V)2

g − cos(θ) cos(φ)4Fm,avg − c3sign(W)(W)2


(10.17)

To find inputs φ, θ, ψ and Fm,avg that stabilizes the system, we first define
the positive definite Lyapunov functions

V1 =
1

2
mŨ2 (10.18)

V2 =
1

2
mṼ 2 (10.19)

V3 =
1

2
mW̃ 2 (10.20)

Assuming that the attitude controller perfectly controls φ, θ and ψ, we can set
these as we please. For simplicity, we set ψ = 0, as this yields less complex control

93

inputs. From the Lyapunov function, V1, we find

V̇1 = mŨ ˙̃U (10.21)

= Ũ(−(sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ))4Fm,avg − c1sign(U)(U)2)
(10.22)

With ψ = 0, we find that θ = sin−1
(

kp,1Ũ
cos(φ)4Fm,avg

)
yields

V̇1 = −kp,1Ũ2 − c1Ũsign(U)(U)2 (10.23)

In practice however, a more linear control input is often preferred. Setting θ =
kp,1Ũ

4Fm,avg
yields

V̇1 = −Ũ cos(φ) sin

(
kp,1Ũ

4Fm,avg

)
4Fm,avg − c1Ũsign(U)(U)2 (10.24)

Ignoring air resistance, setting −φmax < φ < φmax and defining

D1 = {Ũ ∈ R : −4Fm,avg
kp,1

θmax < Ũ <
4Fm,avg
kp,1

θmax} (10.25)

where θmax is a design parameter. We have that V1 ≥ 0 and V̇1 ≤ 0, ∀Ũ ∈ D1 and
V1 = V̇1 = 0 ⇒ Ũ = 0. Thus Ũ = 0 is locally asymptotically stable. Including
air resistance the speed will not stabilize at Ũ = 0, but rather at a speed where
the drag forces equals the forces created by the θ input. To overcome this, a feed
forward term canceling the wind or an integrator term could be added trough
the input.

From the second Lyapunov function, V2, we find

V̇2 = mṼ ˙̃V (10.26)

= Ṽ ((cos(ψ) sin(φ)− sin(θ) sin(ψ) cos(φ))4Fm,avg − c2sign(V)(V)2) (10.27)

With ψ = 0, we find that φ =
−kp,2Ṽ
4Fm,avg

yields

Ṽ (sin

(
−kp,2Ṽ
4Fm,avg

)
4Fm,avg − c2sign(V)(V)2) (10.28)

Ignoring air resistance and defining

D2 = {Ṽ ∈ R : −4Fm,avg
kp,2

φmax < Ṽ <
4Fm,avg
kp,2

φmax} (10.29)

94

where φmax is a design parameter. We have that V2 ≥ 0 and V̇2 ≤ 0, ∀Ṽ ∈ D2 and
V2 = V̇2 = 0 ⇒ Ṽ = 0. Thus Ṽ = 0 is locally asymptotically stable. Including
air resistance the speed will not stabilize at Ṽ = 0, but rather at a speed where
the drag forces equals the forces created by the φ input. To overcome this, a feed
forward term canceling the wind or an integrator term could be added trough
the input.

From the last Lyapunov function, V3, we find

V̇3 = mW̃ ˙̃W (10.30)

= W̃ (g − cos(θ) cos(φ)4Fm,avg − c3sign(W)(W)2) (10.31)

Defining Fub =
g+kp,3W̃

4 cos(θ) cos(φ) such that

Fm,avg =

 Fm,max if Fm,ub ≥ Fm,max
Fm,ub if Fm,min < Fm,ub < Fm,max
Fm,min if Fm,ub ≤ Fm,min

(10.32)

Furthermore, adding constraints to φ and θ such that −φmax < φ < φmax and
−θmax < θ < θmax, making sure that Fm,min <

g
4 cos(θmax) cos(φmax) < Fm,max,

yields

V̇3 = −kp,3W̃ 2 − c3W̃ sign(W)(W)2 (10.33)

Ignoring air resistance, we have V3 ≥ 0 and V̇3 = −kp,3W̃ 2 ≤ 0 ∀ W̃ . Furthermore

V3 = V̇3 = 0⇒ W̃ = 0 and V3 →∞⇒ W̃ →∞, proving that W̃ = 0 is Globally
Exponentially Stable(GES). Including air resistance, the speed is not stable at
W̃ = 0, but will rather stabilize at an equilibrium where the force created by the
input is equal to the drag force. To overcome this, a wind estimate could be fed
forward or an integrator term could be added to the control force.

10.3.3 Structure of the Control System

Combining the guidance system and the speed controller yields the following
block diagram which illustrates the overall control structure

Figure 10.5: Control system

95

where (x̂, ŷ, ẑ) is the estimated position, and v̂n is the estimated speed vector.
The attitude and height controller is ”hidden” inside the quadcopter block.

10.4 Discussion

The control method we chose, to set ψ = 0 and use roll and pitch to translate in
the desired directions, is just one of many solutions. However, it is the solution
yielding the least complex roll and pitch input functions, which is why the method
was chosen. As mentioned, the control inputs we found does not make ṽn = 03×1

a stable equilibrium point because of air drag. However, in practice this will not
be an issue. Figure 10.6 shows a 2D illustration on how the air drag will affect the
quadcopter following a LOS guidance law with the speed controllers as proposed
above. We found this behaviour to be satisfactory, and thus did not find it
necessary to add integrator terms or feed forward terms to counteract the drag.

Figure 10.6: Drag illustration

96

10.5 Recommendation and Future Work

For practical implementation, we recommend that the saturation constraints on
φ and θ are set low at first, along with small proportional gain constants. If air
drag poses a problem, integrator terms or feed forward control could be added.

For future work, straight lines and circular paths could be created along with
guidance laws for curved paths. One could also explore the possibility of using
interpolation to create even smoother paths.

97

98

11 Prototype Development

11.1 Background

Our first prototype, version 1.0 was developed during our fall project and surved
as a platform for testing and proof of concept. When building this prototype we
had focus on simplicity, weight, price and robustness.

The frame is cut out from wood, this is to reduce weight as well as price.
In order to reduce the weight even more we reduced the thickness of the wood
between the house and the motors, as well as from the motors to the end. In
retrospect we can conclude that the weight loss could not justify the reduction
in robustness.

In order to make the quadcopter more robust and to be able to hit objects
without breaking the propeller we positioned the motors such that a small piece
of the frame is sticking outside the propeller. This will protect the propeller from
objects (including the ground) when the quadcopter attitude is stable.

We placed the battery under the center of the quadcopter where it will help
with the stability by lowering the center of gravity. This is done by using thin
metal plates, which is fastened with screws to the frame, and coupled together
with five metal rods. We choose the thin metal plates because of their low weight
and robustness.

Directly above the battery house we built another house consisting of the
same structure as the battery house, using thin metal plates and four metal rods.
This house got three layers, the lower one holds the power distribution board,
the Arduino Leonardo is placed in the middle where it may survive a moderate
crash. On the top we placed the accelerometer, GPS as well as the radio antenna.
See figure 11.1

99

Figure 11.1: Prototype version 1 house

The whole prototype can be viewed in figure 11.2

Figure 11.2: Prototype version 1

11.2 Problem Description

This project requires more than just theoretical work and controller design, it
needs a proper quadcopter prototype in order to produce results. Our intention

100

with this project is to end up with a working quadcopter, where all aspects have
been designed locally. This includes everything from software, filters, control
systems and also the quadcopter frame.

We want to design a quadcopter model which is easy to reproduce, and is cost
effective. Our aim is to produce a model where we can easily exchange damaged
parts, and is simple to mount. During development weight and robustness will
be key areas of focus alongside price.

11.3 Development of Prototype Version 1.1

During testing of the software with our first prototype we encountered an un-
foreseen software bug that made the quadcopter crash. The result was that the
frame had broken in two pieces and we were forced to develop a new prototype.

We based our new prototype on the design of our first quadcopter, although
we made some knowledgeable improvements to the robustness of the aircraft.
The main weaknesses were related to the robustness of the frame as well as the
thin metal plates.

On the first prototype, the frame had reduced thickness at strategic places
to reduce the weight. This however compromised the robustness of the frame to
much, and we decided to not reduce the thickness on this model.

The thin metal plates provided a house structure with low weight and could
withstand some pressure during crashes, which was proven when the electronic
survived the crash that broke the frame. They did however bend easily and made
it difficult to perfectly level the IMU. In addition they had sharp edges that could
be dangerous for people when the quadcopter were in flight. For those reasons
we choose to replace the metal plates with fiberglass. Fiberglass provides several
good qualities for our purpose, with its low weight and high robustness.

Another weakness we discovered during our test flights were the lack of legs
to support the weight of the quadcopter when its on the ground. Legs would let
the quadcopter take off with a stable attitude, and could reduce the impact when
landing. This was however not included in this prototype version due to the fact
that it would be time consuming to make, and prototype version 2 were already
in development. This model will only serve us for a short time.

We placed both of the houses in the same manner as with the first prototype.
This were a good design that served its purpose, delivering handy space and
protection for sensitive electronics.

In order to have a good system for testing the attitude controller we were
developing, we wanted to use a two axis test sequence when tuning. This means
that two adjacent propellers would run, while the remaining two propellers would
be turned off. In order to create a environment that were as realistic and close
to a real flight as possible we needed the quadcopter axes to be able to roll with

101

small friction and resistance. For this reason we used sandpaper to brush down
the edges of the frame until they were round, and shaped like a cylinder.

Figure 11.3: Prototype version 1.1

11.4 Development of Prototype Version 2

The previous prototypes were temporarily models used for controller development
as well as proof of concept. The previous models were developed and built in a
few days, this prototype however, have been designed thoughtfully over a long
period of time.

The prototype version 2 is designed, developed and build by a group of stu-
dents here at NTNU under our guidance, where we were part of all aspects of
the development as project managers. The students (Thomas Rostrup Andersen,
H̊akon Br̊aten, Alexander Vognild Burkow, H̊akon Leithe, Nils Inge Rugsveen
and kristian Stenrød) deserves some credit for the development, design and re-
sults that follows in this chapter[27].

This quadcopter are, unlike the previous versions, designed in software and
printed on the institutes 3D-printer. This provides flexibility and endless possi-
bilities, while it is at the same time both cheap and robust. It is trivial to produce
several identical quadcopters and to replace defect parts.

11.4.1 Design Strategy

By placing all of the propellers equidistant from the center of mass and from each
other, we ensure that the force provided by each propeller is equal. This is the

102

same design principle used in the previous models, and makes the control system
for the attitude more simple and not unnecessary complicated. In addition we
require that the IMU is as close to the center of mass as possible, which will
reduce mathematical operations required in run time.

Based on these criterias it became natural for us and the group to have a
central body with equal sized arms attached, where the electronic components
could be placed. Furthermore the battery was placed under the center of body as
with the previous models due to its weight, this is to optimize the maneuverability
of the aircraft.

It is desirable to protect the electronic equipment from both weather as well as
impact, the solution were to hide the electronic behind different plastic structures.
The arms used to attache motors to the body, are made cylindrical such that the
electronics could be hidden within the arms itself. The center of the aircraft
consists of a solution to attach the arms, as well as a box beneath the center
protecting the battery, and a box above the center protecting the Arduino and
other sensitive equipment.

One of the properties we wanted to introduce to the other models were some
sort of landing leg that could reduce the shock of impact when landing, as well as
to keep the aircraft level on the ground. This feature have been introduced into
this prototype by attaching landing legs on all four arms leading to the propellers
from the body.

Low weight is one of the key focus areas when designing any aircraft, this is
on order to reduce the energy requirements and to increase maneuverability. The
greatest weight impact (except for the battery) comes from the amount of plastic
used to create the structure. We focused on using the least amount of plastic,
while at the same time keeping the robustness of the aircraft at an acceptable
level.

In order to make it easy to exchange electronic parts, and have the opportunity
to open the quadcopter, it was decided to not use any glue or other permanent
fastening methods. All the different plastic components, with the exception of
the legs (which are designed to be threaded onto the arms), are fastened using
screws and nuts.

11.4.2 Robustness Calculations

In order to achieve a robust quadcopter that omit frequent repairs, we have con-
ducted some control calculations. The calculations control the choice of printer
material as well as the design of the different structures in order to ensure that
they can handle the force and stress that will be inflicted during flight.

In order to conduct these calculations there have been made some presump-
tions and simplifications, and for that reason the results are conservative and
with a good margin for error. The simplification is to consider the different arms

103

from one propeller to the other propeller to be one continuous beam. The total
force and stress are applied as a point load at the junction of the arms, and spread
equally to each arm.

The arms have a octagonal cross-sectional profile, with an internal reinforcing
web. All parts have a thickness of 2mm. Anther simplification that have been
made is to assume that the octagonal cross-section profile are presumed as a
circular cross-section profile. We have calculated five different load scenarios:

• The weight of the quadcopter distributed over the four arms, with only the
exterior circular section of the arms to support the weight.

• Upwards acceleration with only the exterior circular section of the arms to
support the force provided by the propellers.

• Upwards acceleration with only the internal reinforcing web in the arms to
support the force provided by the propellers.

• Upwards acceleration with both exterior circular section and internal rein-
forcing web in the arms to support the force provided by the propellers.

• Doubled weight and upwards acceleration with both exterior circular section
and internal reinforcing web in the arms to support the force provided by
the propellers.

These different load scenarios were picked based on previous experience in the
”experts in teams” group. As a basic rule, the different parts are tested separately
if the cross-sectional profile consists of several elements. The acceleration used
in this calculations is scaled to a factor of two compared to the original load.

The calculations can be viewed in detail in [27], and the results are rendered
below in table 11.1

Load scenario Structure part Result(σuk)
Normal weight, on ground Exterior circular section 1, 04N/mm2

Normal weight, Upwards acc. Exterior circular section 2, 08N/mm2

Normal weight, Upwards acc. Internal reinforcing web 10, 89N/mm2

Normal weight, Upwards acc. Exterior circular section and
internal reinforcing web 1, 75N/mm2

Double weight, Upwards acc. Exterior circular section and
internal reinforcing web 6, 98N/mm2

Exterior circular section 8, 31N/mm2

Internal reinforcing web 43, 6N/mm2

Table 11.1: Results from load calculations

104

From these results we can see the tensile stresses σuk that will occur under-
neath the arms of the quadcopter in the different load scenarios. Based on the
thickness of our structure and the material used (ABS-plus) there have been cal-
culated how much stress the material can be seduced to before it starts deforming
or fracturing [27], the results are listed below in table 11.2:

Capacity value
Deformation 6, 15N/mm2

Fracture 25, 4N/mm2

Table 11.2: Capacity for ABS-plus

Using these values we can see which of the load scenarios that are critical. If
we get stress above 6, 15N/mm2, we might risk that the ABS-material becomes
elastic and that the arms can bend. If the load stress becomes greater than
25, 4N/mm2, the ABS-material will get so deformed that we might experience
fractions in the structure.

By comparing the calculated tensile stress in table 11.1, with the capacity
for the ABS-plus listed in table 11.2, it is possible to determine how robust the
quadcopter really is. The situations where only the internal reinforcing web in
the arms received the stress, as well as the scenario with double weight and
upwards acceleration will cause tensile stress above the capacity of the material.
These situations are not likely scenarios, and its important to note that only the
case where we have double weight and upwards acceleration and all the stress
is carried by the internal reinforcing web in the arms will cause fractions in the
material. This is a highly unlikely scenario to encounter.

This structure with the chosen material ABS-plus, will endure any normal
flight stress that the quadcopter may experience. In the scenarios where we
experience large and unlikely high stress we might see that the arms bends, but
we will not experience fractures in the construction from any forces resulting from
the quadcopters own weight and acceleration.

11.4.3 Model and Description of Parts

The model were based on an existing quadcopter model named ”Tubular Crossfire
2 quadcopter” and modified to fit our specifications and desires. The model
composes of six different components, in total 12 parts. All of these components
can be 3D-printed and fasten with screws and nuts (ISO-standard M3). The
procedure for mounting the quadcopter can be viewed in the appendix chapter
A.

105

Top Frame

Figure 11.4 is a graphical representation of the top frame for the center body on
the aircraft. The component is the upper part that is used to fasten the arms,
and also serves as the part you fasten the electrical components and the technical
box. The big holes in the center is used for wires connected with the ESC as well
as power cables for the Arduino. The top frame is connected with the bottom
frame using 8 M3 screws, where two screws passes through each arm.

Figure 11.4: Top frame

Bottom Frame

The model of the bottom frame used in the quadcopter can be seen in figure
11.5. This component serves as the lower part of the fastening mechanism for the
arms, as well as the part the battery box is attached to. It consist of the same
8 holes used to attach the bottom frame to the top frame, and also comes with
holes to fasten the battery box. The square opening is used for the power cable
from the battery towards the power distribution board, and is placed right by
the opening on the battery box. The reminding holes improves the ventilation,
and this reduces the temperature of the components resting both between the
frames as well as the components within the technical box.

106

Figure 11.5: Bottom Frame

Technical Box

Figure 11.6 shows the model for the technical box. The technical box is designed
to be placed over the electronic components used in the quadcopter, in order to
protect against crash as well as to provide basic protection against weather. The
box is designed with a small hole for the radio antenna, and also a small shelf
where the radio component can be placed, as can be seen in figure 11.7. The box
is fastened to the main body using three screws and nuts.

107

Figure 11.6: Technical box top view

Figure 11.7: Technical box seen from below

108

Battery Box

Figure 11.8 shows the model of the battery box which carry the battery. Its got
one opening on one of the short sides, where the battery can be inserted and
replaced with ease. The battery box is designed with four screw holes that allows
us to fasten it to the bottom frame. The range sensor can be placed underneath
the battery box.

Figure 11.8: Battery Box

Arm

Figure 11.9 shows the design of the arms. On the left side we can see the cylindri-
cal container where the motor can be placed and fastened using two screws from
beneath, which are fastened directly into the motor. The wires from the motors
are pulled through the cavity in the arm into the central body of the quadcopter,
between the top and bottom frame where the ESC and the power distribution
board are placed. There are two holes on the opposite side on the arm, this part
lies between the top and bottom frame and is fasten using two screws.

109

Figure 11.9: Model of the Arm

Leg

Legs are the final component needed in our model, and the model can be viewed in
figure 11.10. The legs function is to raise the body of the quadcopter up from the
ground, and provide horizontal support. The component is shaped and designed
to be threaded onto the arms, and do not not require any extra equipment in
order to be mounted. The legs have a slight dampening function for landing, this
is accomplished using a thin layer of the material which makes the leg flexible. A
square pillar are attached to the button of the legs, and is designed to slide into
the rest of the leg and provide support.

Figure 11.10: Model of the Leg

Printing Time

Table 11.3 indicates how long time it takes to print out each component, depend-
ing on the printer as well as how many components are being printed, and their

110

composition. The total time to print an entire quadcopter is approximately 36
hours when using the 3D-printer owned by department of engineering cybernetics
at Norwegian university of science and technology[27].

Component No. Time in hours Total
Top frame 1 3 3
Bottom frame 1 3 3
Technical box 1 7 7
Battery box 1 6 6
Arm 4 3.45 13.4
Leg 4 0.75 3
Total 12 35.4

Table 11.3: Approximate time needed for printing the quadcopter

11.5 Observation and Results

Figure 11.11: Prototype version 2

111

11.6 Discussion and Conclusion

The resulting model can be seen in figure 11.11. The production of the quad-
copter is cheap due to the fact that we use a 3D printer, but the process is time
consuming, which can be seen in table 11.3. The model can easily be printed and
replicated by both the institute of engineering cybernetics as well as others.

The model consists of both a technical box as well as arms and legs to pro-
tect the electrical components against both impact as well as light protection
from weather. The technical box provides enough space for the user to add and
exchange electrical parts. The prototype is easily mounted using screws, which
enables fast exchange of damaged parts.

One weakness with this model is that the arms are designed to fit our current
motor, and therefore it could be problematic to use a motor with different size
specifications. However, the motor model used in our quadcopter model exists in
a series of different specifications and prices, and is widely used.

With this model, we have fulfilled the criterias stated in chapter 11.2. Testing
have proved that the quadcopter is both light enough for a stable flight, as well
as robust enough to handle a normal flight procedure. The battery box also
provides an easy solution for exchange of the battery, which enables short ground
time between longer flights.

11.7 Recommendation and Future Work

The 3D-printing of the different components is a time consuming process, and
we therefore recommend to have some spare parts to reduce downtime if the
quadcopter is damaged. We especially recommend to print some extra legs, they
are the weakest component in this structure.

There are a few weaknesses with the model design which could be improved.
The battery box is designed such that it is easy and fast to exchange battery, as
can be seen in figure 11.8, but should have some safety mechanism for securing
the battery during flight.

One of the weakest parts of the quadcopter is the propellers, which is also a
part that often bump into other objects. For both robustness reasons as well as
safety, we recommend that a structure is built around the propellers. It could be
a separate component that can be mounted on the arm itself, of directly to the
motor screw fixings.

112

12 Windows Application for Quadcopter Control

When altitude, attitude and position control are implemented in the microcon-
troller it is desirable to control all of these attributes. This can be implemented
a number of ways ranging from a remote control, smartphone using bluetooth or
Windows application using a radio transmitter.

12.1 Choice of Application Platform

Remote hand-held control is one of the means most commonly used by commercial
quadcopters for controlling the aircraft. They have great advantages, the remote
hand-held control provides reliable and intuitive control, and is easy to set up.
For mass production purposes it is the best choice, but development is time costly
for a single quadcopter, and therefore it is a poor choice for us.

Smarphones are common property in Norway, and development for android
applications is well documented (Android operating system is incorporated in
76.6 % of today’s smartphones [13]). Android applications can be developed
in Android studio (alternatively eclipse with some extensions), which provides
pre made functionality for android phones. All the functionality within the an-
droid applications are programmed in java while the appearance are commonly
programmed in XML.

Although there are several different options for wireless communication when
using a smartphone, the most obvious choice is to either use Wi-Fi or bluetooth,
they are both included in almost all smartphones. Bluetooth is a safe option, it
utilized radio signals 1000 times weaker than the standard wireless technologies
used by mobile phones, and runs on 2.4GHz RF[4]. Bluetooth provides the option
for a secure connection, meaning that once a connection has been made, no-one
can listen in and there are also no interference from other Bluetooth devices. The
range is normally limited to approximately 10 meters, which is less than desirable
when it comes to quadcopter control, but an advantage is that the devices does
not need to have line of sight once the connection is established. There exists
bluetooth devices that can ensure a range of 90 meters, but these class 1 bluetooth
devices[4] are not standard on most smartphones, and thus becomes irrelevant to
consider.

Another good choice is to develop an Windows application and provide com-
munication through a radio transmitter. There are numerous of different pro-
gramming languages that can be used to create a good controller, and documen-
tations for all of these are countless. According to our radio transmitter’s data
sheets [5] the calculated theoretical radio link distance is a few kilometres is open
areas. Based on our experience as well as other user reviews [11] this can be
exaggerated, however it can grantee several hundred meters of coverage in open
areas.

113

Comparing the different options we can conclude that a smartphone with
bluetooth connection may be the preferred choice for control if the quadcopter
is to be used indoors. However our main objective embraces outdoor flying and
open environment, and in this situation the radio link will provide far superior
range. In addition it is far more convenient to process data and analyze data using
a Windows application, since we need to conduct experiments when developing
the quadcopter. For those reasons we find it most suitable to develop a Windows
application in order to control the quadcopter, using a radio transmitter for
communication.

12.2 Choice of Programming Language and Framework

There are numerous of good programming languages as well as programs to choose
from when developing a graphical user interface in Windows. In the process of
choosing programming language we considered several criterias:

• How easy is it to implement both basic as well as more advanced graphic
interface

• How easy is it to implement functions for data analyzation

• How much effort it takes to implement serial communication with the radio
transmitter

• Our own level of experience with the language and framework

The most common programming languages used when making graphical user
interface applications in Windows are C#, java and python. We have some expe-
rience using all of these programming languages, however we only have experience
of making a graphical user interfaces with C# and python.

Python does not come bundled with any graphical user interface frameworks
(or toolkits), but there exists a huge number of them. We have experience using
a framework named WxPython, this provide an easy solution for the creation of
both basic and advanced graphics. It is however an event-based solution that
can be challenging when implementing quadcopter control using the keyboard.
Python provides a huge amount of pre-made functionality including serial com-
munication protocols.

C# is based on C language and part of the .NET languages, C# is intended
to be a simple, modern, general-purpose, object-oriented programming language
[15]. C# provides the functionality to create elegant graphical designs, and the
framework rewards you for exerting proper object oriented techniques with fast
code. As with WxPython there exists solutions for serial communication with
the radio transmitter, as well as general functionality.

114

There are many frameworks for graphical user interface development for C#,
among the most common we find GOME, KDE, Unity and Xfce[21]. We have
some experience using Unity for graphical user interface development, and there-
fore this became the obvious choice for framework.

Although both the previous discussed options can be argued to be equal op-
tions when designing our application, we choose to program our application in
C# using the Unity framework. Unity and C# are easy to learn, provides great
functionality and is well documented.

12.3 Programming Graphical User Interface in C# Using
Unity3D

Unity is a cross-platform game engine used to develop video games for Windows,
mac, linux, consoles, mobile devices and websites. Unity contains the tools and
functionality to design and develop advanced 3-D games, and thus provides all
the functionality needed to create an easy quadcopter control application. In
addition to being a powerful cross-platform 3-D engine, Unity provides a user
friendly development environment, easy enough for the beginner and powerful
enough for the expert. There are numerous of advantages for using unity3D
compared to other framework and development environments tools:

• Unity comes in two versions, free and pro. The free version provides most
of the functionality and all of the core functionality needed for our project
and is available for all persons or companies making less than gross 100.000
$ per year from programs made in Unity3D. The Unity3D pro license costs
1.500 $ and is inexpensive compared with the cost of game engines with the
same functionality.

• One of the main advantages of Unity is the portability. The same source
code can be used to build projects for multiple platforms with an incredible
ease. The latest version allows you to move freely between 21 platforms,
including Windows, IOS, linux, android and oculus rift. For our project it
could ease the expansion for the quadcopter control to include smartphones
as well as oculus rift.

• Unity is an engine that focuses on simplifying the application development
workflow, and includes a visual editor. The visual editor allows you to build
and modify the project very rapidly. The ability to run the application while
simultaneously seeing the properties and locations of all objects in the scene
is a powerful and time saving feature.

• Unlike many game engines, unity does not limit object behaviours to built-
in modules that come packaged with the engine. Instead unity allows for

115

powerful behaviour written in any of its languages (JavaScript, C# and
Boo). Furthermore, all three languages can be used at the same time within
a project to allow people of different technology backgrounds to contribute
to a project at the same time [17]. The fact that the languages are used
as scripts allows for fast compilation time, quick iteration, and flexibility of
design.

• Unity provides simplified object creation, especially for hierarchical object
structures and dependencies, which simplifies application code. It contains
a mechanism for building instances of objects, which may contain other
dependent object instances[16]

• Unity has an interception capability, which allows developers to add func-
tionality to existing components by creating and using handlers that are
executed before a method or property call reaches the target component[16].

• It can read configuration information from standard configuration systems,
such as XML files (which are used when developing android applications in
android studio), and use it to configure the container[16].

• Unity makes no demands on the object class definition, there is no require-
ments to apply attributes to classes, and there is also no limitation on the
class deceleration.

• Unity has an active and supported community, and great forums that can
provide assistance and solutions to known problems. The size of this com-
munity is enormous, in 2012 53,1% of all mobile developers reported using
unity to make games [16].

It is obvious that the Unity3D game engine provides an incredible frame-
work for our application. In order to start with the design and development of
our graphical user interface its important to identify the requirements. For our
quadcopter control application we require:

• A solution for connecting any radio transmitter through serial cable to the
computer, and thus a user interface where we can choose which serial port
to communicate with

• Some configuration options, where we can edit the different control gains
and also edit the bias for our IMU, which will reduce drift during flight

• Some control scheme where altitude and attitude can be controlled, and
where position and yaw angle can be monitored

Our aim it to create a simple and intuitive graphical user interface using
a basic design. This will enable new users to quickly grasp the fundamental
properties with the application, and thus save time.

116

12.4 Communication Design and Implementation in C#

The communication between the Windows application and the quadcopter is
performed using a radio transmitter connected through a serial cable. In order to
achieve this we need to establish a connection with the radio transmitter in our
Windows application. In addition there are several concerns that needs attention
when developing the communication protocols. Furthermost is the fact that we
can loose connections at any time, and we may experience sporadic byte loss.

12.4.1 How to Change COM Port on the Radio in Windows

The first time you insert the serial cable from the radio transmitter, drivers will
automatically be installed and the device will be assigned a serial port, also
named ”COM port” in Windows. What COM port number the radio link will
be assigned to depends on which COM ports are available.

There is a known problem using C# and unity when connecting to a COM
port number that is 10 or greater. There is a solution for fixing this, where
you specify a COM port number greater than 9 using the following syntax:
”\\.\COMXX” where XX is the COM port number[25]. This solution however,
makes the unity software application buggy and does not work properly on all
computers. For this reason we choose to come up with a different solution for
the situations where you end up having a COM port greater or equal to 10.

Our solution is to change the assigned COM port provided by Windows. This
is a solution that can be performed on any Windows computer, and once its been
completed the radio transmitter will be assigned this COM port for the future
and therefore this is a one-time effort. There are very few occasions where all
COM ports 1-9 are being used by hardware, and in those occasions some of them
can usually be assigned a greater COM port.

Following is a step-by-step guide for how to change COM port for the radio
in Windows 7. Press start, right click on computer and select properties.

117

Figure 12.1: How to access Windows properties

In the properties menu, select Device Manager.

Figure 12.2: How to access Device Manager

Once you have opened the device manager, look for the list item named
”ports (COM & LPT)”, open this list item, and search through the names of
all the connected COM ports. The radio transmitter will be labeled ”Silicon
Labs CP210x USB to UART Bridge” followed by a COM port number. If the
COM port number is 10 or greater you need to proceed with this guide to change
the COM port. Right click the radio transmitter item and select properties.

118

Figure 12.3: How to access COM port properties

Press the ”port settings” tab in the upper part of the window, and then press
”Advanced...”

Figure 12.4: How to access Advanced port settings

In the new window that opened you can select a new available COM port in
the lower left corner. Simply select one between 1-9 that is not labeled as ”(in

119

use)” and then press ”OK” in all the open Windows. You may need to restart
your computer in order for this to be updated. If every COM port 1-9 are labeled
as ”(in use)” you need to go back to the Device Manager and find one COM port
1-9 that you can change to a higher COM port number. This will release a COM
port for the radio transmitter.

Figure 12.5: How to change COM port in hardware

12.4.2 How to Enable Serial Communication in C#

Serial communication in C# are not among the most challenging tasks, and .NET
provides very useful internal classes which can make this kind of communication
very simple and efficient [6].

When opening a Serial port for communication you need to know several
aspects regarding how the communication works with that particular device:

• Port name: In order to connect to any COM port, you need to know which
one you are interested in. This can be done by retrieving a list of all the
available serial ports. When you do know which COM port to connect to,
the port name will simply be ”COMx” where x is the number 1-9.

• Baud rate: Different devices runs on different baud rates, if you input the
wrong baud rate than only gibberish will come out. Baud rate is the unit
for symbol rate or modulation rate, in symbols per second or pulses per
second [18]. Our radio transmitter runs on baud rate 57600.

• Data bits: Sets the standard length of data bits per byte. As default it is
8, which is also what we want for our serial communication.

• Parity: Here you either enable or disable the parity-checking protocol. Par-
ity is an error-checking procedure in which the number of 1s must always
be the same—either even or odd—for each group of bits that is transmitted
without error. If a parity error occurs on the trailing byte of a stream, an

120

extra byte will be added to the input buffer with a value of 126[12]. For
our case, the parity protocol is set as none.

• Stopbits: Set the standard number of stopbits per byte. Default value is
One, and is the same value as the radio transmitter use.

Once a connection has been established, the .NET library provides function-
ality to send and read from serial port, as well as to check if the port is still
connected.

12.4.3 Design of Communication Protocol

Our communication with the quadcopter are enabled by using a radio transmitter,
which have many advantages, however one of the main problems with this solution
are potential loss of connection and loss of bytes. These are two obstacles that
needs to be handled in software on both the quadcopter side as well as the
Windows application side.

There are some important limitations to consider when designing a commu-
nication protocol, one of the foremost aspects is the time delay imported into
the system. The time it takes for the message to be sent from one side and be
received on the other side varies, but can take as long as 80 milliseconds. Con-
sidering we need to process data on the receiving side as well as send a reply, it
may take as much as 200 milliseconds before a reply will be received at the source
of the original message. Combine this limitation with the fact that we need to
detect and handle both connection loss and byte loss, we need to be careful and
thorough when designing a communication protocol.

How We Detect and Handle Loss of Connection

The radio antenna microcontroller does not provide functionality that can present
any information on the status of the radio link. The communication protocol
needs to ensure weather or not the two antennas are actually still connected.

In our design of the communication protocol, the Windows application is
responsible for the control of the connection, and can be considered the ”master”.
The Windows application will send out an ”ack” message in the situations where
there have been no communication for some period of time, while the quadcopter
will respond to any message received with a confirmation message.

In our communication design we created a list (or queue) of messages to be
sent from the Windows application, any new message will be appended to the
end of this list. Once a message have been sent from the Windows application it
will wait for up to 200 millisecond for a confirmation to be received. As soon as
we receive a confirmation from the quadcopter, we will delete the first element
in the list (the message that was just sent) and transmit the next message in the

121

queue. If we have not received any confirmation during our 200 millisecond timer
delay, we will try to transmit the same message over again.

We will encounter situations where we wont have any relevant information to
send for some time, in order to ensure that the radio link connection still holds we
have included an ”ack” procedure. If there have been no messages transmitted
for 250 milliseconds we will add an ”ack” message at the start of the message
queue to be sent out. This message requires the same confirmation from the
quadcopter as any other message.

From the Windows application point of view, we have a stable connection
if there have been a successful message transfer during the last second. The
connection is considered lost if there have been no successful communication
for more than one second. However, this does not change the behavior of the
program, the application will still try to transmit the first queued message every
200 millisecond until it receives a confirmation. The application will inform the
user that there is a problem with the radio link, and likewise inform the user
when the connection is stable.

How We Detect and Handle Loss of Byte

In the cases where we have ensured that we have a stable connection, we still
cant guarantee that all the bytes transmitted from one source reaches the other
device. There is also a chance that some of the bytes can be corrupted.

In order to handle these challenges we have created this message format;
”xxxMESSAGEend” where:

• The first part xxx are three numbers, these three numbers represents the
length of the message in bytes, and includes both the message part as well
as the end part. The first operation to be performed is to check that the
first three bytes are indeed numbers. If they are not numbers, the rest
of the message will be ignored since there have clearly already been some
byte loss, or in the rare case; a byte corruption. When we have checked
that they are in fact numbers, we know the length of the message, and how
many bytes we are waiting for.

• The message part speaks for itself, this is the part of the transmission
that contains the actual message. The message part starts with a flag
that indicates what type of message it contains, which makes the message
handling effective and enables us to use short messages.

• Every message ends with the same three characters, namely ”end”. This is
to indicate that this is the end of the message, so there is no chance that two
messages can be examined as one message. We use our knowledge about
the number of bytes provided at the start of every message in combination

122

with a known message ending to ensure that we have no byte loss. If the
message are the designated length and ends with ”end”, we will respond
with a confirmation message and proceed with the message handling. If
the message is to short or ends in some other manner than ”end”, we will
dispense with the message and send a notification that the message received
was corrupted.

This message structure along with our solution for detecting and handling
the radio link connection have solved both our concerns regarding using a radio
transmitter. We still got limitations concerning how many messages we can
send ever second, but this has not reduced the functionality of the quadcopter,
however, it will constrain our ability to represent detailed flight data in this
report. We can also still experience situations where we have corrupted bytes in
the message part, which will render the message useless.

12.5 Functionality Description of the Windows Application

12.5.1 Connection Tab

Following is a screenshot showing how the connection page in the Windows ap-
plication looks. By inputting which COM port the radio link is connected to
and its connection baud rate, a connection can be established by simply pressing
”Open Com Port”.

123

Figure 12.6: Connection tab in Windows application

12.5.2 Update Tab

One of the main aspects when developing a new controller for a system are gain
tuning. Tuning is one of the most important parts of the development, and being
thorough on this part can mean the difference between good performance and
poor performance using the same controller.

We wanted to be able to change all the different gains in the controller, without
connecting the quadcopter to the computer with a serial cable, our solution were
to include this as a feature in the Windows application.

From the application we can update both the proportional, derivative and
integral gains as well as to change the constant gain produced to provide lift.
In addition we have included an offset control, which allows us to change the
bias in the accelerometer in both roll and pitch. The bias can be changed by
either pressing the button or by using the arrow keys on the keyboard. This is a
great feature if the user notice that the quadcopter drifts in any direction, which
most commonly is due to incorrect leveling of the accelerometer. Drift can also

124

be caused by uneven weight distribution by for instance the battery, and can be
difficult to estimate while the quadcopter is stationed on the ground.

The application will on this tab provide information about the current con-
nection status, current proportional, integral and derivative gains as well as the
current roll and pitch bias settings. Pressing the spacebar on the keyboard will
immediately stop the quadcopter propellers and is considered a fail-safe solution
in case the quadcopter is out of control.

Figure 12.7: Configuration Update tab in Windows application

12.5.3 Manual Control Tab

One of the most basic user control of the quadcopter is to be able to control the
angles and altitude of the aircraft. This can only be performed once the attitude
and altitude controllers have been proved stable. In order to control said variables
we have made a tab called ”Manual Control” in the Windows application.

In the Manual Control section all angles can be manipulated, and our goal
were to design a system that is intuitive for the user. Any button can either be

125

pressed using the mouse, or using the keyboard for the respective key.

• Yaw control: The Q and E buttons will change the yaw angle of the quad-
copter, Q will make the aircraft turn counter-clock-wise while the E will
make the aircraft turn clock-wise. The current yaw estimation (based on
the magnetometer in combination with the IMU) are represented as a com-
pass, if the compass needle points at 0 degrees it obviously means that the
quadcopter reference points towards north.

• Pitch control: The W and S buttons will change the pitch angle of the quad-
copter. This control is intended for changing position and not to change
the angle indefinitely, for that reason the change in the pitch angle is con-
stant while the button is pressed down and will be reset to its original angle
once released. This is a precaution to prevent the user from making the
quadcopter unstable by inducing to large angles.

• Roll control: The A and D buttons will change the roll angle of the quad-
copter. This control have the same limitation and behaviour as defined for
the pitch control described above.

• Altitude control: The up and down buttons (they can also be enabled
using the up and down arrow keys) are designed for the user to control the
altitude. Below is a graphical representation of the current motor effort
required to conduct the changes and keeping a steady altitude.

There are as described some limitations for what the user might actually
perform, but they are all in place to ensure stability and safety for both the
aircraft as well as people and property. The last fail-safe solution is to press the
spacebar, this will ”immediately” stop the quadcopter propellers.

126

Figure 12.8: Manual Control tab in Windows application

127

128

13 Error Handling

The objective to control a quadcopter is a complicated task, composed of many
processes and sensor measurements. There are numerous errors that can occur,
some are crucial, while others can be handled such that the quadcopter can
continue with its flight. In this chapter we will explore some of the errors and
our strategies for detecting and handling the errors.

13.1 Problem Description

Explore the various probable errors that may occur, and develop a strategy for
detecting and handling said errors.

13.2 Error Detecting and Handling Strategies

13.2.1 Loss of Communication

The quadcopter communicates with the Windows application using a radio trans-
mitter, the radio link can at any time be broken, and this needs to be handled.
In section 12.4.3 we discuss how to ensure whether or not we got a stable com-
munication, on the arduino side we have a slightly simplified test for the stability
of the communication.

We have designed our Windows application to always send or resend some
message at least every 250 milliseconds. based on this we know that we should
get at least four messages every second. On the arduino side we deem the radio
link as stable if we have received a proper message according to the message
protocol (as described in section 12.4.3) during the last 1.5 seconds. In other
words we allow the loss of 5 messages in a row before the communication is
presumed lost.

The loss of communication is considered a critical error, if the quadcopter
experiences some other error there would be no way for stopping it. Therefore,
in the case of loss of communication we will stop the motors to prevent danger
to people or property.

13.2.2 Low Battery

The quadcopter is powered by a battery, and the voltage is measured as described
in section 2.11. The battery is fully charged if each cell voltage is 4.2 Volt, and
around 20% if we measure 3.7 Volt. The total voltage for the battery will then
be 12.6 Volt at 100 % and 11.1 Volt across the three cells at 20 %. To include a
safety margin we will consider any voltage less than 11.3 Volt as ”low battery”.

In the case of Low battery we will alert the user of the Windows application
that the voltage is low. The user should then take action to stop the quadcopter

129

fairly soon in order to not damage the battery, or risk crashing the quadcopter.
At low voltage the user would also experience poorer performance from the quad-
copter, this is a result from slightly lower input to each of the motors and therefore
we get a more ”sluggish” response. An even better solution would be to imple-
ment a landing function as described in section 13.3.1, to be called once the
battery gets as low as 11.1 Volt as an extra safety precaution.

13.2.3 Loss of Sensors

There is a slim chance that we at any time can loose connection with sensors,
for various reasons, but mainly these problems will come from loose wires. Some
sensors are more critical with respect to the flight operations than others, but
all sensors serves a purpose. The challenge is to detect that we have lost the
connection, and develop some strategy to reduce the potential danger to both
the quadcopter as well as people and property.

Inertial Measurement Unit

The most critical and necessary sensor are the IMU with its accelerometer and
gyroscope measurements. It is impossible to control the quadcopter without fre-
quent updates from this sensor, and a loss of connection will cause the quadcopter
to become unstable. The loss of sensor connection can come from loose wires, a
breach in the cable or a malfunction in the IMU itself. All of them are unlikely,
the IMU and Arduino are attached to the body of the quadcopter and thus do
not move with respect to each other, but there is still a slight possibility that this
can happen.

There are two ways to detect loss of connection with the IMU. The first one is
to use a timeout strategy, if we have not received any data in an unreasonable time
period we can argue that it is a high probability that the connection is lost, and
either way we do not know the current status of the quadcopter. This strategy
will detect problems related to the wires. The other method is to compare the
value of the raw data provided by the IMU, to the previous received data. If
the data is equal for 5 time samples, there is a high probability that we have
an malfunction in the IMU itself, it’s even unlikely that we would experience
identical data for all axes two measurement in a row.

We only use one IMU on the quadcopter, and there are no simple strategy
to safely lang the aircraft without accelerometer and gyroscope measurements.
The best strategy in order to reduce potential damage is to stop all four motors
and let the quadcopter crash to he ground. This is not a good solution, but the
potential danger of letting the quadcopter fly freely are more severe. In order to
develop a better strategy a second IMU is required.

130

There is one last potential danger regarding the IMU, and this concerns a
malfunction in the IMU itself. If the IMU generates ”random” values for the
accelerometer and gyroscope measurements we would have a dangerous situation.
This is difficult to discover and handle, but in theory we could compare the raw
data to the previous data, and use the motor input data to reason whether
or not they are realistic. This is something we have not implemented in the
microcontroller.

Range Sensor

The range sensor provides reliable height measurements when hovering at alti-
tudes below 1.2 meters. This prevents the quadcopter from drifting away, and
from crashing with the ground. We can encounter some of the same errors as
with the IMU; no data, same measurements or random measurements.

We can detect that we receive no data in the same fashion as with the IMU,
by using a timeout. The data we receive from the range sensor is the time it
takes from sending an ultrasonic pulse until the pulse returns, and is measured in
microseconds. We will use the same strategy for discovering sensor malfunction
as we did with the IMU, by comparing the last five measurements. If they are
identical we assume that the sensor connection is lost. It is significantly easier to
determine whether we get reliable data, or if the data is just random in the range
sensor than it is to access with the IMU. We can use the model along with the
previous sensor output combined with motor input to reason whether the sensor
data is reliable or not, and use this to detect if the sensor is malfunctioning.

If we discover that we have lost connection with the range sensor, our strategy
is to let the propellers spin slightly slower than what’s necessary in order to keep
a constant altitude. This will cause the quadcopter to drop fairly slowly towards
the ground. It will slow down slightly when its close to the ground due to the
increased thrust each propeller generates close to the ground. Using this strategy
we ensure that the quadcopter lands with a stable attitude, and in most cases we
land so softly that the quadcopter receives no damage.

Magnetometer

We will use the same strategy for detecting loss of connection with the magne-
tometer as with the range sensor, and we have the same possible errors. If we
detect that the connection is lost we will use the accelerometer and gyro measure-
ments in combination with the model for the quadcopter in order to estimate the
yaw angle. This estimation is fairly good, and will allow us to continue with the
flight. This estimate will detect any yaw rotation and slow it, but we are not able
to set the quadcopter facing any specific angle from the Windows application.

131

GPS

We use the GPS in order to acquire a fairly good position estimate, and use this
to prevent any major drift in position. We may experience the same errors as with
the magnetometer and range sensor, and detect them in the same manner. The
chance that the GPS will provide random measurements are however extremely
slim. In addition to these errors we can also loose lock with the satellites, this is
an error that the GPS chip will detect itself.

If we experience some error regarding the GPS, we can use the model along
with IMU sensor data to estimate the position. Using this we will experience drift
in the position estimation, and we recommend that the user lands the aircraft.

13.2.4 Roll or Pitch Angles Close to Singularity

The attitude controller is based on the system model, and our model uses Euler
angles to describe the behavior. Euler angles provides an easy and intuitive
representation of the model, but the main weakness is that it contains singularities
at ±90 degrees for roll and pitch angles. This will cause the control system to
act unstable, and unpredictable.

Our strategy for handling this is to stop the motors if the angles are above
±70 degrees for either roll or pitch. Our main concern are the singularities, but
we also consider the quadcopter unstable, and with small chances of recovery if
the roll or pitch angle somehow are above ±70 degrees. By stopping the motors
we will experience a crash landing with an unstable attitude, and the aircraft
will in most cases be inflicted significant damage. This is still a better strategy
than to let the motors keep spinning, where we risk further damage to people or
property.

13.3 Recommendation and Future Work

13.3.1 Loss Of Communication

Our strategy for handling loss of communication is as described in section 13.2.1,
to stop the motors in order to prevent danger to people or property. In most
cases the quadcopter will function normally when the communication link is
broken, and therefore we will cause an unnecessary crash. A better solution
is to implement a landing function. This landing function is useful both when we
have loss of communication as well as in normal operating mode.

132

13.3.2 Loss of Sensors

IMU

The IMU is the single most important sensor used in the quadcopter, and the
quadcopter can simply not work without one. A possible improvement is to
include a backup IMU, to be able to faster detect any errors (including the
randome values that we currently have no solution to detect, as described in
section 13.2.3) as well as providing a solution when we have an IMU malfunction.

13.3.3 Roll or Pitch Angles Close to Singularity

The main problem regarding high roll or pitch angles is the fact that the model
uses Euler angles which contains singularities at ±90 degrees. By using Quater-
nions we avoid this problem, and can handle these angles, assuming that the
control system is able to re-stabilize the quadcopter.

133

134

14 Discussion and Conclusion

Throughout this paper, we have developed a quadcopter sensor platform from
scratch, including; system modeling, state estimation, control design, communi-
cation handling and implementation of a user interface. Furthermore, a quad-
copter frame was designed and printed using additive manufacturing techniques.
Standalone cheap sensors have been coupled through an Arduino Due microcon-
troller and different filtering methods have been examined.

Implementation of discrete filtering schemes were devised and implemented.
Together with a system model describing the quadcopter motion, the library
implementation of the Kalman filter proved useful throughout the project. By
defining the system propagation matrices and the resulting jacobians, new esti-
mation schemes were simple to implement on the microcontroller.

Fast and accurate attitude estimates were obtained in Chapter 5 and 6 with
the aid the extended Kalman filter. However, the Euler angles used to describe
the attitude contains singularities at θ = ±90◦. A solution (which is harder to
understand and implement) would be to use a quaternion system description.
This would enable the quadcopter to perform acrobatic maneuvers.

The position estimates provided by the GPS should not be used directly with
a control scheme relying on position data, as this would lead to the quadcopter
”hopping” around the desired position. When flying close to the ground, the
ultrasonic sensor can be used as an alternative method for height estimation in
order to avoid ground collisions.

A proportional-integral-derivative controller proved to yield more stable roll
and pitch angles when compared to the alternatives and stable flight was achieved.
A nonlinear controller could in theory provide better inputs to the system and
thus lead to improved performance, but implementation would be time consum-
ing.

To allow user control of the quadcopter, an altitude controller was devised,
implemented and proved stable. Together with the attitude controller, this en-
abled the quadcopter to hover in place. However, the controller is limited by the
range of the ultrasonic sensor if the GPS does not have a satellite lock.

Guidance systems calculating required velocity vectors were explored, and a
velocity controller to achieve the desired velocity vector was deduced. Implemen-
tation of these techniques will allow autonomous flight in the future, were the
user simply provides a set of desired way-points.

To enable user configurations and control mid-flight, a Windows application
for user control was implemented. Through radio transmission and by utilizing
foul proof communication protocols, connection over long distances is assured.

This project has given us valuable experience when it comes to; system mod-
eling, advanced filtering and estimation methods, control algorithms, graphical

135

user interface development, project management, microcontroller programming
and conduction of an extensive project. We are satisfied with our overall achieve-
ments and everything we have learned through the execution of this project.

136

15 Future Work

The quadcopter possesses countless possibilities when it comes to functional ca-
pabilities. Some of the expansions we would consider to implement in the future,
can be summarized as

• Using quaternions instead of Euler angles to describe the attitude to avoid
singularities

• Adding a differential pressure sensor to the quadcopter, enabling height
estimation without GPS above the range of the ultrasonic sensor

• Implementation of the velocity controller to enable autonomous way-point
control

• Tracking of target equipped with a GPS device

• Adding a camera and develop a target tracking algorithm using imaging
techniques

137

138

References

[1] Arduino - arduino due. http://www.arduino.cc/en/Main/

arduinoBoardDue. Acessed: 2015-05-13.

[2] Arduino - arduino leonardo. http://arduino.cc/en/Main/

arduinoBoardLeonardo. Acessed: 2015-05-13.

[3] Battery specifications. http://www.hobbyking.com/hobbyking/store/__

9184__Turnigy_5000mAh_3S_20C_Lipo_Pack.html. Acessed: 2015-05-13.

[4] Bluetooth vs rf. http://www.headsets.com/headsets/resources/

bluetooth-vs-rf.html. Acessed: 2015-05-13.

[5] Hm-trp series 100mw transciever modules v1.0. http://www.hoperf.com/

upload/rf_app/HM-TRP.pdf. Acessed: 2015-05-13.

[6] How to work with c-sharp serial port communication. http://codesamplez.
com/programming/serial-port-communication-c-sharp. Acessed: 2015-
05-13.

[7] Matrixmath library. http://playground.arduino.cc/Code/MatrixMath.
Acessed: 2015-01-25.

[8] Motor specifications. http://www.himodel.com/electric/SUNNYSKY_

Angel_Series_A2212-980KV_2-3S_Airplane_Outrunner_Brushless_

Motor.html. Acessed: 2014-09-03.

[9] Playground Arduino - mpu-6050 accelerometer + gyro. http://

playground.arduino.cc/Main/MPU-6050. Acessed: 2014-09-11.

[10] Quadcopter dynamics and simulation. http://andrew.gibiansky.com/

blog/physics/quadcopter-dynamics/. Acessed: 2015-05-14.

[11] The real specs and ranges for 3dr radios. http://diydrones.com/forum/

topics/the-real-specs-and-ranges-for-3dr-radios. Acessed: 2015-
05-13.

[12] Serialport.parity propoerty. https://msdn.microsoft.com/en-us/

library/system.io.ports.serialport.parity. Acessed: 2015-05-13.

[13] Smartphone os market share. http://www.idc.com/prodserv/

smartphone-os-market-share.jsp. Acessed: 2015-05-13.

[14] Ultrasonic ranging module specifications. http://www.micropik.com/PDF/
HCSR04.pdf. Acessed: 2015-05-13.

139

http://www.arduino.cc/en/Main/arduinoBoardDue
http://www.arduino.cc/en/Main/arduinoBoardDue
http://arduino.cc/en/Main/arduinoBoardLeonardo
http://arduino.cc/en/Main/arduinoBoardLeonardo
http://www.hobbyking.com/hobbyking/store/__9184__Turnigy_5000mAh_3S_20C_Lipo_Pack.html
http://www.hobbyking.com/hobbyking/store/__9184__Turnigy_5000mAh_3S_20C_Lipo_Pack.html
http://www.headsets.com/headsets/resources/bluetooth-vs-rf.html
http://www.headsets.com/headsets/resources/bluetooth-vs-rf.html
http://www.hoperf.com/upload/rf_app/HM-TRP.pdf
http://www.hoperf.com/upload/rf_app/HM-TRP.pdf
http://codesamplez.com/programming/serial-port-communication-c-sharp
http://codesamplez.com/programming/serial-port-communication-c-sharp
http://playground.arduino.cc/Code/MatrixMath
http://www.himodel.com/electric/SUNNYSKY_Angel_Series_A2212-980KV_2-3S_Airplane_Outrunner_Brushless_Motor.html
http://www.himodel.com/electric/SUNNYSKY_Angel_Series_A2212-980KV_2-3S_Airplane_Outrunner_Brushless_Motor.html
http://www.himodel.com/electric/SUNNYSKY_Angel_Series_A2212-980KV_2-3S_Airplane_Outrunner_Brushless_Motor.html
http://playground.arduino.cc/Main/MPU-6050
http://playground.arduino.cc/Main/MPU-6050
http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
http://diydrones.com/forum/topics/the-real-specs-and-ranges-for-3dr-radios
http://diydrones.com/forum/topics/the-real-specs-and-ranges-for-3dr-radios
https://msdn.microsoft.com/en-us/library/system.io.ports.serialport.parity
https://msdn.microsoft.com/en-us/library/system.io.ports.serialport.parity
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.micropik.com/PDF/HCSR04.pdf
http://www.micropik.com/PDF/HCSR04.pdf

[15] What is c-sharp good for. http://forums.codeguru.com/showthread.

php?313788-What-is-C-good-for. Acessed: 2015-05-13.

[16] When should i use unity. https://msdn.microsoft.com/en-us/library/

ff660859. Acessed: 2015-05-13.

[17] Why you should be using the unity game engine. http://www.informit.

com/articles/article.aspx?p=2031153. Acessed: 2015-05-13.

[18] Wikipedia, The Free Encyclopedia - baud. http://en.wikipedia.org/

wiki/Baud. Acessed: 2015-05-13.

[19] Wikipedia, The Free Encyclopedia - counter-electromotive force. http://

en.wikipedia.org/wiki/Counter-electromotive_force. Acessed: 2015-
05-14.

[20] Wikipedia, The Free Encyclopedia - electronic speed control. http://en.

wikipedia.org/wiki/Electronic_speed_control. Acessed: 2014-09-11.

[21] Wikipedia, The Free Encyclopedia - graphical user interface. http://en.

wikipedia.org/wiki/Graphical_user_interface. Acessed: 2015-05-13.

[22] Wikipedia, The Free Encyclopedia - hybrid system. http://en.wikipedia.
org/wiki/Hybrid_system. Acessed: 2015-05-25.

[23] Wikipedia, The Free Encyclopedia - nonlinear control. http://en.

wikipedia.org/wiki/Nonlinear_control. Acessed: 2015-05-13.

[24] Wikipedia, The Free Encyclopedia - ziegler-nichols method. http://en.

wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method. Acessed: 2015-
05-13.

[25] Windows - createfile function. https://msdn.microsoft.com/en-us/

library/windows/desktop/aa363858(v=vs.85).aspx. Acessed: 2015-05-
13.

[26] Y. M. Al-Younes, M. A. Al-Jarrah, and A. A. Jhemi. Linear vs. nonlinear
control techniques for a quadrotor vehicle. 2010.

[27] T. R. Andersen, H. Braaten, A. V. Burkow, H. Leithe, N. I. Rugsveen, and
K. Stenroed. Kvadrokopter: Fra prosjekt til produksjon. 2015.

[28] R. W. Beard and T. W. McLain. Small unmanned Aircraft Theory and
Practice. Princeton, 2012.

[29] T. I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
Wiley, 2011.

140

http://forums.codeguru.com/showthread.php?313788-What-is-C-good-for
http://forums.codeguru.com/showthread.php?313788-What-is-C-good-for
https://msdn.microsoft.com/en-us/library/ff660859
https://msdn.microsoft.com/en-us/library/ff660859
http://www.informit.com/articles/article.aspx?p=2031153
http://www.informit.com/articles/article.aspx?p=2031153
http://en.wikipedia.org/wiki/Baud
http://en.wikipedia.org/wiki/Baud
http://en.wikipedia.org/wiki/Counter-electromotive_force
http://en.wikipedia.org/wiki/Counter-electromotive_force
http://en.wikipedia.org/wiki/Electronic_speed_control
http://en.wikipedia.org/wiki/Electronic_speed_control
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Hybrid_system
http://en.wikipedia.org/wiki/Hybrid_system
http://en.wikipedia.org/wiki/Nonlinear_control
http://en.wikipedia.org/wiki/Nonlinear_control
http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx

[30] J. K. Hedrick and A. Girard. Control of nonlinear dynamic systems: Theory
and applications. 2010.

[31] A. V. Hystad and J. B. Lehn. Model, design and control of a quadcopter.
2014.

[32] L. B. Prasad, B. Tyagi, and H. O. Gupta. Optimal control of nonlinear
inverted pendulum dynamical system with disturbance input using pid con-
troller and lqr. 2011.

[33] N. Shimkin. Nonlinear control systems. 2009.

141

142

A Building Quadcopter Prototype 2

Following is a detailed mounting procedure for the quadcopter prototype 2[27]

A.1 Part List

Pos No. part number producent Description
1 1 A000062 Arduino Arduino Due
2 4 Angel A2212 2212-980KV SUNNYSKY Motor
3 4 1045R Any Propel 10x4.5 (254mX114mm)
4 4 HK-SS20A Hobbyking ESC -SS series 18-20A
5 1 GY-521 Arduino IMU – MPU6050
6 1 M2011051101 GeekOnFire GPS – Arduino shield
7 1 HMC5883L Any Magnetometer
8 1 GP2Y0A21 Sharp Range sensor - IR
9 1 Telemetry Kit 433Mhz 3DRobotics Radio – 3DR Radio set
10 1 9171000033 HobbyKing Power distribution board
11 1 T5000.3S.20 HobbyKing Battery (11.1V-5000mah)
12 1 A2012042808 GeekOnFire GPS Antenna
13 20 3.5mm Male Any Male banana plug
14 12 3.5mm Female Any Female banana plug
15 1 XT-60 Male Female Bullet Any Battery connector
16 1 Dupont Wire Cable Any 2.54mm
17 1 Multistar XT60 Any power distributor

Table A.1: Part list

Pos No Drawing file Description
101 1 Battery box Battery box
102 1 Button plate Bottom frame
103 1 Top plate Top frame
104 1 Tech box Technical Box
105 4 Arm Arms
106 4 Leg Legs

Table A.2: 3D print

Pre-ordered parts is listed in table A.1. Parts that needs to be 3D-printed is
listed in table A.2. The necessary screws and nuts are listed in A.3.

143

Pos No. Component Proucent Description
201 15 M3 Nuts Any Nuts
202 8 M3x35 screw Any Screw to mount Arms
203 8 M3x6 screw Any Screw to mount motors
204 7 M3x10 screw Any Screw to mount frames

Table A.3: Screws and nuts

A.2 Preparation of Pre-ordered Parts

A.2.1 Motors

The motor (pos 2) is delivered with unterminated cables, they are extended to
22 cm, and needs to be terminated using male banana plugs (pos 13)

Figure A.1: Prepared motors with termination

A.2.2 Electrical Speed Controller

The ESC(pos 4) is delivered with unterminatd cables, In order to prepare them
for mounting, you need to:

• Terminate using male banana plug (pos 13) on the battery + and -.

• Terminate using female banana plug (pos 14) on motor A, B and C.

144

• Terminate using male header pin on black and white signal cable.

• The red signal cable is not in use, and hence does not need to be terminated.

Se figur A.2

Figure A.2: A prepared ESC should look like this

A.2.3 Range Sensor

Keep the original length and terminate using male hader pin on alle three cables,
see figure A.3

145

Figure A.3: Prepared range sensor

A.2.4 Inertial Measurement Unit And Magnetometer

The IMU and magnetometer need to be soldered using the accompanying header
pins as showns in figure A.4

146

Figure A.4: IMU and magnetometer with pins

147

A.3 Wiring diagram

A graphical illustration of the wiring’s can be seen in figure A.5

Figure A.5: Wiring diagram

148

A.4 Cable List

All cables is connected as shown in table A.4

Ref. Cable Color Source Destination
K1 pos 9 Yellow Radio Ard: 0
K2 pos 9 Green Radio Ard: 1
K3 pos 9 Red Radio Ard: 5V
K4 pos 9 Black Radio Ard: GND
K5 pos 12 Coax Antenna GPS
K6 pos 4 White ESC 1 Ard: 9
K7 pos 4 Black ESC 1 Ard: GND
K8 pos 4 Red ESC 1 PDB: +
K9 pos 4 Black ESC 1 PDB: -
K10 pos 4 White ESC 2 Ard: 10
K11 pos 4 Black ESC 2 Ard: GND
K12 pos 4 Red ESC 2 PDB: +
K13 pos 4 Black ESC 2 PDB: -
K14 pos 4 White ESC 3 Ard: 11
K15 pos 4 Black ESC 3 Ard: GND
K16 pos 4 Red ESC 3 PDB: +
K17 pos 4 Black ESC 3 PDB: -
K18 pos 4 White ESC 4 Ard: 12
K19 pos 4 Black ESC 4 Ard: GND
K20 pos 4 Red ESC 4 PDB: +
K21 pos 4 Black ESC 4 PDB: -
K22 pos 8 Yellow Range sensor Ard: A0
K23 pos 8 Red Range sensor Ard: 5V
K24 pos 8 Black Range sensor Ard: GND
K25 pos 8 Red Voltage meter Ard: Vin
K26 pos 8 Black Voltage meter Ard: GND
K27 pos 8 Yellow Voltage meter Ard: A1
K28 pos 11 Black Battery: - PDB: -in
K29 pos 12 Red Battery: + PDB: +in
K30 pos 16 Any Compass: SDA Ard: 2
K31 pos 16 Any Compass: SDL Ard: 3
K32 pos 16 Red Compass: Vin Ard: 5V
K33 pos 16 Black Compass: GND Ard: GND
K34 pos 16 Any IMU: SDA Ard: 2
K35 pos 16 Any IMU: SDL Ard: 3
K36 pos 16 Red IMU: Vin Ard: 5V

149

K37 pos 16 Black IMU: GND Ard: GND

Table A.4: Wiring schematic

A.5 Mounting Procedure

A.5.1 Motors and Arms

The motors (pos 2) are mounted in the arms(pos 105) using two screws(pos 203),
the wires are thread through the arm.

A.5.2 Electrical Speed Controller and Frame

The arms is mounted between the top frame(pos 103) and bottom frame(pos 102)
using screws(pos 202) and nuts(pos 201). The ESC(pos 4) and power distribution
board(pos17) needs to be connected with the motors and placed between the two
frames before the arms are mounted. All cables are connected according to table
A.4.

Figure A.6: The ESC’s are palced in the space between the top frame and bottom
frame

150

A.5.3 Technical Box

In the technical box we put the remaining electronic components. The Ar-
duino(pos 1), IMU(pos 5), GPS(pos 6), magnetometer(pos 7) and radio(pos 9).
The box is mounted using 3 screws(pos 204) and nuts(pos 201).

A.5.4 Battery Box

The battery box(pos 101) is mounted using screws(pos 204) and nuts(pos 201).

Figure A.7: The resulting quadcopter model

151

152

B Description and Walkthrough of Various Code

B.1 Arduino Code

B.1.1 Inertial Measurment Unit

Contains code related to the inertial measurement unit. This includes code to

• Extract raw IMU data

• Extract raw IMU DMP data (from the IMU’s own filter)

• Extract filtered IMU DMP data

• Acquire raw IMU data, which is then processed in a extended Kalman filter

• Calculate the current IMU offset

B.1.2 Infra Red Range Sensor

Contains code to read the sensor measurements provided b the IR range sensor.

B.1.3 Magnetometer

We have included C code for both raw and Kalman filtered Magnetic measure-
ments provided by the magnetometer.

B.1.4 Arduino Main

The folder titled ”ARDUINO MAIN” contains all the C-files required when per-
forming a flight with the quadcopter.

• ARDUINO MAIN : Initialize remaining sensors, calculate control gains and
motor input. This is the only file that should me altered if we want some
different behavior in the quadcopter

• Filter : Contains all the functionality for handling the Kalman filtration of
all required sensors and system states

• Motor : Initializes the electric speed controllers and set the current motor
speed to zero

• Radio: Contain functionality for validating incoming messages, handle val-
idated messages, and ensure the stability of the radio link

153

B.1.5 Motor tester

This is a useful script to test that the motors work properly, here you can insert
any PWM to set the speed.

B.1.6 Radio

Contains the core functionality for validating messages and controlling the radio
link status.

B.1.7 Ultrasonic Range Sensor

Simple code for reading the range measurements provided by the ultrasonic range
sensor.

B.1.8 Voltage Reader

A simple script for assessing the overall voltage of the battery.

B.2 Matlab Code

B.2.1 Matlab Filtering

All Matlab code related to various filter techniques are included within this folder.
This includes;

• All files regarding filter comparison made during this report

• Files used for Kalman filtering of the position

• Files used for Kalman filtering of roll and pitch angles

• Files used for Kalman filtering of the yaw angle

B.2.2 Read Data over the Radio

Files required for receiving data from the radio directly into Matlab

B.2.3 Read Data over Serial

This folder includes various Matlab scripts for reading data over a serial cable,
this includes;

• DMP filtered values from the IMU

• Both DMP filtered values and raw measurements from the IMU

154

• Range (or height) measurements

• IMU data and corresponding motor input

• IMU data and magnetometer measurements

• Raw magnetometer measurements

• Kalman filtered roll and pitch angles

• θ input

• Kalman filtered yaw angle

B.2.4 Simulation

Simulation of both PID and LQR controllers conducted last fall is included in
this file.

B.3 Windows Application - Unity

The folder that contains the entire Windows application code may look compli-
cated, but this is mostly unity files, and we follow the standard unity convention
for storing our files. In order to open the project in unity, the most straightfor-
ward way is to open the quadcopter control folder, then open the ”Assets” folder,
and then the ”Scenes” folder, then open the ”Scene1” file in Unity.

All our source code files can be foul under; Quadcopter control folder -¿
”Assets” -¿ ”Scripts”, and they will also be valuable when opening the project
in Unity. All pictures used in our project are located under; Quadcopter control
folder -¿ ”Assets” -¿ ”Textures” and are also valuable when opening the project
in Unity.

There are only two C# source files for our quadcopter control application:

• GUIController.cs: The GUIController file contains all the functionality di-
rectly connected towards the creation and response from the visual content
in the application. Also the functionality for queue control, and ”ack” mes-
sages with the corresponding timers are located in this file, and it can thus
be viewed upon as the ”main” file for the project.

• SerialComm.cs: This file contains all the functionality directly concerning
the serial communication with the radio device. It contains functions for
ensuring that the serial connection is still working after the COM port is
opened, functionality for sending and reading messages to and from the
radio device as well as functions for opening and closing the designated
COM port.

155

	Introduction
	Motivation
	Fundamental Aspects Required When Designing an Autonomous Quadcopter
	Structure of The Report

	Summary of Fall Project and Components
	Introduction
	Arduino Due Board
	Motors
	Propellers
	Electric Speed Controller
	Inertial Measurement Unit
	Magnetometer
	Range Sensor
	Global Positioning System
	Radio
	Voltage Measurement
	Power Distribution Board
	Battery
	DC-DC Power Adapter

	Coordinate Systems and Quadcopter Theory
	Coordinate Systems
	BODY Frame
	North-East-Down, Earth-Centered-Earth-Fixed and Geodetic Coordinates
	The Rotation Matrix
	Rotation Between BODY and NED
	Transformation Between Geodetic and NED

	Quadcopter Dynamics
	Motor Dynamics
	Thrust Generated by the Propellers
	Torques Generated by the Propellers
	Equations of Motion
	Kinematic Model
	Kinetic Model

	Filter Designs
	Theory
	Low-pass Filter
	High-pass Filter
	Complementary Filter
	Continuous-discrete Extended Kalman Filter

	Problem Description
	Discrete Implementation
	Low-pass Filter
	High-pass Filter
	Complementary Filter
	Continuous-discrete Extended Kalman Filter

	Discussion
	Recommendations and Future Work

	Estimation of Roll and Pitch
	Theory
	Gravity Vector
	Accelerometer Measurement Model
	Gyroscope Measurement Model

	Problem Description
	Design of Solution
	Inertial Measurement Unit Sensitivity Range and Scaling
	Accelerometer Bias Compensation
	Gyroscope Bias Compensation
	Accelerometer Estimate
	Gyroscope Estimate
	Complementary Filter Estimate
	Kalman Filter Implementation

	Observations and Results
	Discussion and Conclusion
	Recommendations and Future Work

	Estimation of Yaw
	Theory
	Magnetometer measurement model
	Gyroscope Measurement Model
	Earth's Magnetic Field
	Hard and Soft Iron Distortions

	Problem Description
	Design of Solution
	Hard and Soft Iron Distortions Compensation
	Magnetometer Estimate
	Gyroscope Estimate
	Combined Magnetometer and Gyroscope

	Observations and Results
	Hard and Soft Iron Calibration
	Yaw Estimates

	Discussion and Conclusion
	Recommendations and Future Work

	Estimation of Position
	Theory
	Position Measurement from Global Positioning System Technology
	Distance Measurement Using Sound

	Problem Description
	Design of Solution
	Ultrasonic Sensor Height Estimate
	GPS Position Estimate
	Kalman Position Estimate

	Observations and Results
	Discussion and Conclusion
	Recommendations and Future Work

	Control of Attitude
	Theory
	The Linear Quadratic Regulator
	The Proportional-Integral-Derivative Controller
	Nonlinear Control Theory
	Alternative Controllers

	Problem Description
	Design of Solution
	The Linear Quadratic Regulator
	The Proportional-Integral-Derivative Controller
	Nonlinear Controller

	Observations and Results
	The Linear Quadratic Regulator
	The Proportional-Integral-Derivative Controller

	Discussion and Conclusion
	The Linear Quadratic Regulator
	The Proportional-Integral-Derivative Controller

	Recommendation and Future Work

	Control of Altitude
	Theory
	Problem Description
	Design of Solution
	Observation and Results
	Discussion and Conclusion
	Recommendation and Future Work

	Control of Motion
	Theory
	Dynamic Positioning
	Waypoints, Paths And Trajectories

	Problem Description
	Design of Solution
	Guidance Systems, Trajectory and Path Generation
	Control of Velocity in North-East-Down Coordinate System
	Structure of the Control System

	Discussion
	Recommendation and Future Work

	Prototype Development
	Background
	Problem Description
	Development of Prototype Version 1.1
	Development of Prototype Version 2
	Design Strategy
	Robustness Calculations
	Model and Description of Parts

	Observation and Results
	Discussion and Conclusion
	Recommendation and Future Work

	Windows Application for Quadcopter Control
	Choice of Application Platform
	Choice of Programming Language and Framework
	Programming Graphical User Interface in C# Using Unity3D
	Communication Design and Implementation in C#
	How to Change COM Port on the Radio in Windows
	How to Enable Serial Communication in C#
	Design of Communication Protocol

	Functionality Description of the Windows Application
	Connection Tab
	Update Tab
	Manual Control Tab

	Error Handling
	Problem Description
	Error Detecting and Handling Strategies
	Loss of Communication
	Low Battery
	Loss of Sensors
	Roll or Pitch Angles Close to Singularity

	Recommendation and Future Work
	Loss Of Communication
	Loss of Sensors
	Roll or Pitch Angles Close to Singularity

	Discussion and Conclusion
	Future Work
	Bibliography
	Building Quadcopter Prototype 2
	Part List
	Preparation of Pre-ordered Parts
	Motors
	Electrical Speed Controller
	Range Sensor
	Inertial Measurement Unit And Magnetometer

	Wiring diagram
	Cable List
	Mounting Procedure
	Motors and Arms
	Electrical Speed Controller and Frame
	Technical Box
	Battery Box

	Description and Walkthrough of Various Code
	Arduino Code
	Inertial Measurment Unit
	Infra Red Range Sensor
	Magnetometer
	Arduino Main
	Motor tester
	Radio
	Ultrasonic Range Sensor
	Voltage Reader

	Matlab Code
	Matlab Filtering
	Read Data over the Radio
	Read Data over Serial
	Simulation

	Windows Application - Unity

